如何使用ORB获得良好的Homography?

时间:2015-07-12 10:07:10

标签: c++ opencv homography orb

this answer中我了解到之前的所有事情" // 5.使用RANSAC"验证匹配。

在我的代码中,我使用该代码除了ransacTest的部分。我面临的问题是,我得到的太多了#34;匹配"这是错误的和/或有时我的代码找到的对象周围的矩形太扭曲了。

//Template image's corners 
obj_corners[0] = cvPoint( 0, 0); 
obj_corners[1] = cvPoint( best_img.cols, 0 );
obj_corners[2] = cvPoint( best_img.cols, best_img.rows ); 
obj_corners[3] = cvPoint( 0, best_img.rows );

obj.clear();
scene.clear();
for ( int i = 0; i < best_matches.size(); i++ )
{
    //Get the keypoints from the good matches
    obj.push_back( best_img_keypoints[ best_matches[i].queryIdx ].pt ); // Template image
    scene.push_back( frame_keypoints[ best_matches[i].trainIdx ].pt ); // Frame 
}

// -----Find homography----- //
std::vector<uchar> outlier_mask; //I don't use this line
cv::Mat H = findHomography( obj, scene, CV_RANSAC, reprojThres, outlier_mask);
cv::perspectiveTransform(obj_corners, scene_corners, H);

a)如果我使用基本矩阵,我可以使用findHomography和perspectiveTransform吗?

b)以上几行有什么问题吗?

1 个答案:

答案 0 :(得分:0)

我和你有同样的问题。我通过将symMatches视为good_matches(best_matches)和

之后解决了这个问题
if (good_matches.size() > 3){
    //-- Localize the object
    std::vector<Point2f> obj;
    std::vector<Point2f> scene;

    for (int i = 0; i < good_matches.size(); i++)
    {
        //-- Get the keypoints from the good matches
        obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
        scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
    }

    Mat H = findHomography(obj, scene, CV_RANSAC);

    //-- Get the corners from the image_1 ( the object to be "detected" )
    std::vector<Point2f> obj_corners(4);
    obj_corners[0] = cvPoint(0, 0); 
    obj_corners[1] = cvPoint(img_object.cols, 0);
    obj_corners[2] = cvPoint(img_object.cols, img_object.rows); 
    obj_corners[3] = cvPoint(0, img_object.rows);
    std::vector<Point2f> scene_corners(4);

    perspectiveTransform(obj_corners, scene_corners, H);

它也适合你。