我使用Caffe训练了一个神经网络模型:
/home/f/caffe-master/build/tools/caffe train -solver=/media/my_solver.prototxt
然后我在验证集上对学习模型进行了评分:
/home/f/caffe-master/build/tools/caffe test -model=/media/my_train_test.prototxt
-weights model.caffemodel -iterations 100
但是如何在Caffe中获得经过训练的神经网络模型预测的标签?
我知道我可以为此目的使用Python或Matlab绑定,但我很想知道我们是否可以直接通过命令行界面获取Caffe中的预测标签。
official Caffe's tutorial on interfaces似乎没有提到它,看caffe
的帮助没有帮助:
> f@f-VirtualBox:~/caffe/caffe-master/build/tools$ ./caffe
caffe: command line brew
usage: caffe <command> <args>
commands:
train train or finetune a model
test score a model
device_query show GPU diagnostic information
time benchmark model execution time
Flags from /home/f/caffe-master/tools/caffe.cpp:
-gpu (Run in GPU mode on given device ID.) type: int32 default: -1
-iterations (The number of iterations to run.) type: int32 default: 50
-model (The model definition protocol buffer text file..) type: string
default: ""
-snapshot (Optional; the snapshot solver state to resume training.)
type: string default: ""
-solver (The solver definition protocol buffer text file.) type: string
default: ""
-weights (Optional; the pretrained weights to initialize finetuning. Cannot
be set simultaneously with snapshot.) type: string default: ""
答案 0 :(得分:0)
如果您不想浏览Python,可以添加HDF5_OUTPUT图层:它会将预测输出保存在HDF5文件中。
否则,如果您想加入代码,可以在https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cpp#L74附近打印或保存bottom_data_vector[k].second