使用Matplotlib创建概率/频率轴网格(不规则间隔)

时间:2015-07-01 17:35:13

标签: python matplotlib plot probability

我正在尝试创建一个频率曲线图,我无法操纵轴来获得我想要的情节。

以下是我想要创建的所需网格/图表的示例:

Frequency Curve Example

以下是我使用matplotlib创建的内容:

Current Matplotlib Result

要在此图中创建网格,我使用了以下代码:

m1 = pd.np.arange(.2, 1, .1)
m2 = pd.np.arange(1, 2, .2)
m3 = pd.np.arange(2, 10, 2)
m4 = pd.np.arange(2, 20, 1)
m5 = pd.np.arange(20, 80, 2)
m6 = pd.np.arange(80, 98, 1)
xTick_minor = pd.np.concatenate((m1,m2,m3,m4, m5, m6))
xTick_major = pd.np.array([.2,.5,1,2,5,10,20,30,40,50,60,70,80,90,95,98])

m1 = range(0, 250, 50)
m2 = range(250, 500, 10)
m3 = range(500, 1000, 20)
m4 = range(1000, 5000, 100)
m5 = range(5000, 10000, 200)
m6 = range(10000, 50000, 1000)

yTick_minor = pd.np.concatenate((m1,m2,m3,m4,m5,m6))
yTick_major = pd.np.array([250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000])

axes.invert_xaxis()
axes.set_ylabel('Discharge in CFS')
axes.set_xlabel('Exceedance Probability')
axes.xaxis.set_major_formatter(FormatStrFormatter('%3.1f'))
axes.set_xticks(xTick_major)
axes.set_xticks(xTick_minor, minor=True)
axes.grid(which='major', alpha=0.7)
axes.grid(which='minor', alpha=0.4)

axes.set_yticks(yTick_major)
axes.set_yticks(yTick_minor, minor=True)

网格是正确的,但我现在要做的是确保在显示屏中,低概率范围得到更多间隔,而低放电值(y轴)则相同。基本上我想控制刻度之间的间距,而不是刻度间隔本身,因此.2到.5的范围显示类似于x轴上40到50之间的范围,如理想的网格显示。

这可以在matplotlib中完成吗?我已经阅读了关于tick_params和locators的文档,但这些都没有解决这种轴格式问题。

2 个答案:

答案 0 :(得分:14)

您可以为x轴定义自定义比例,您可以使用它而不是' log'。遗憾的是,它很复杂,您需要找出一个函数,可以将您为x轴提供的数字转换为更线性的数字。见http://matplotlib.org/examples/api/custom_scale_example.html

编辑添加:

问题非常有趣我决定弄清楚我是否可以自己制作自定义轴。我修改了链接中的代码以使用您的示例。我有兴趣看看它是否按您想要的方式工作。

编辑:新的和改进的(?)代码!间距并不像以前那样平坦,但是当你将一个点列表传递给plt.gca()。set_xscale时,它会自动完成(例如,见代码末尾附近)。它进行曲线拟合以使这些点适合逻辑函数,并使用结果参数作为转换的基础。我运行此代码时会收到警告(警告:将屏蔽元素转换为nan)。我仍然无法弄清楚那里发生了什么,但它似乎并没有造成问题。这是我生成的数字:

matplotlib figure with custom axis

import numpy as np
from numpy import ma
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
from matplotlib.ticker import Formatter, FixedLocator
from scipy.optimize import curve_fit

def logistic(x, L, k, x0):
    """Logistic function (s-curve)."""
    return L / (1 + np.exp(-k * (x - x0)))

class ProbabilityScale(mscale.ScaleBase):
    """
    Scales data so that points along a logistic curve become evenly spaced.
    """

    # The scale class must have a member ``name`` that defines the
    # string used to select the scale.  For example,
    # ``gca().set_yscale("probability")`` would be used to select this
    # scale.
    name = 'probability'


    def __init__(self, axis, **kwargs):
        """
        Any keyword arguments passed to ``set_xscale`` and
        ``set_yscale`` will be passed along to the scale's
        constructor.

        lower_bound: Minimum value of x. Defaults to .01.
        upper_bound_dist: L - upper_bound_dist is the maximum value
        of x. Defaults to lower_bound.

        """
        mscale.ScaleBase.__init__(self)
        lower_bound = kwargs.pop("lower_bound", .01)
        if lower_bound <= 0:
            raise ValueError("lower_bound must be greater than 0")
        self.lower_bound = lower_bound
        upper_bound_dist = kwargs.pop("upper_bound_dist", lower_bound)
        self.points = kwargs['points']
        #determine parameters of logistic function with curve fitting
        x = np.linspace(0, 1, len(self.points))
        #initial guess for parameters
        p0 = [max(self.points), 1, .5]
        popt, pcov = curve_fit(logistic, x, self.points, p0 = p0)
        [self.L, self.k, self.x0] = popt
        self.upper_bound = self.L - upper_bound_dist

    def get_transform(self):
        """
        Override this method to return a new instance that does the
        actual transformation of the data.

        The ProbabilityTransform class is defined below as a
        nested class of this one.
        """
        return self.ProbabilityTransform(self.lower_bound, self.upper_bound, self.L, self.k, self.x0)

    def set_default_locators_and_formatters(self, axis):
        """
        Override to set up the locators and formatters to use with the
        scale.  This is only required if the scale requires custom
        locators and formatters.  Writing custom locators and
        formatters is rather outside the scope of this example, but
        there are many helpful examples in ``ticker.py``.
        """


        axis.set_major_locator(FixedLocator(self.points))

    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Override to limit the bounds of the axis to the domain of the
        transform.  In this case, the bounds should be
        limited to the threshold that was passed in.  Unlike the
        autoscaling provided by the tick locators, this range limiting
        will always be adhered to, whether the axis range is set
        manually, determined automatically or changed through panning
        and zooming.
        """
        return max(vmin, self.lower_bound), min(vmax, self.upper_bound)

    class ProbabilityTransform(mtransforms.Transform):
        # There are two value members that must be defined.
        # ``input_dims`` and ``output_dims`` specify number of input
        # dimensions and output dimensions to the transformation.
        # These are used by the transformation framework to do some
        # error checking and prevent incompatible transformations from
        # being connected together.  When defining transforms for a
        # scale, which are, by definition, separable and have only one
        # dimension, these members should always be set to 1.
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, lower_bound, upper_bound, L, k, x0):
            mtransforms.Transform.__init__(self)
            self.lower_bound = lower_bound
            self.L = L
            self.k = k
            self.x0 = x0
            self.upper_bound = upper_bound
        def transform_non_affine(self, a):
            """
            This transform takes an Nx1 ``numpy`` array and returns a
            transformed copy.  Since the range of the scale
            is limited by the user-specified threshold, the input
            array must be masked to contain only valid values.
            ``matplotlib`` will handle masked arrays and remove the
            out-of-range data from the plot.  Importantly, the
            ``transform`` method *must* return an array that is the
            same shape as the input array, since these values need to
            remain synchronized with values in the other dimension.
            """
            masked = ma.masked_where((a < self.lower_bound) | (a > self.upper_bound), a)
            return ma.log((self.L - masked) / masked) / -self.k + self.x0

        def inverted(self):
            """
            Override this method so matplotlib knows how to get the
            inverse transform for this transform.
            """
            return ProbabilityScale.InvertedProbabilityTransform(self.lower_bound, self.upper_bound, self.L, self.k, self.x0)

    class InvertedProbabilityTransform(mtransforms.Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, lower_bound, upper_bound, L, k, x0):
            mtransforms.Transform.__init__(self)
            self.lower_bound = lower_bound
            self.L = L
            self.k = k
            self.x0 = x0
            self.upper_bound = upper_bound

        def transform_non_affine(self, a):
            return self.L / (1 + np.exp(-self.k * (a - self.x0)))
        def inverted(self):
            return ProbabilityScale.ProbabilityTransform(self.lower_bound, self.upper_bound, self.L, self.k, self.x0)

# Now that the Scale class has been defined, it must be registered so
# that ``matplotlib`` can find it.
mscale.register_scale(ProbabilityScale)


if __name__ == '__main__':
    import matplotlib.pyplot as plt
    x = np.linspace(.1, 100, 1000)
    points = np.array([.2,.5,1,2,5,10,20,30,40,50,60,70,80,90,95,98])

    plt.plot(x, x)
    plt.gca().set_xscale('probability', points = points, vmin = .01)
    plt.grid(True)

    plt.show()

答案 1 :(得分:6)

我终于找到了正确的解决方案,感谢@Amy Teegarden让我朝着正确的方向前进。我想我会在这里分享最终解决方案供其他人参考!这是最终结果:

Flood Frequency Curve Probability Plot

以下是真实概率轴刻度,使用正常CDF及其反向PPF,由musigma进行参数化。

import numpy as np
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
from matplotlib.ticker import FormatStrFormatter, FixedLocator
from scipy.stats import norm

class ProbScale(mscale.ScaleBase):
    """
    Scales data in range 0 to 100 using a non-standard log transform
    This scale attempts to replicate "probability paper" scaling

    The scale function:
        A piecewise combination of exponential, linear, and logarithmic scales

    The inverse scale function:
      piecewise combination of exponential, linear, and logarithmic scales

    Since probabilities at 0 and 100 are not represented,
    there is user-defined upper and lower limit, above and below which nothing
    will be plotted.  This defaults to .1 and 99 for lower and upper, respectively.

    """

    # The scale class must have a member ``name`` that defines the
    # string used to select the scale.  For example,
    # ``gca().set_yscale("mercator")`` would be used to select this
    # scale.
    name = 'prob_scale'


    def __init__(self, axis, **kwargs):
        """
        Any keyword arguments passed to ``set_xscale`` and
        ``set_yscale`` will be passed along to the scale's
        constructor.

        upper: The probability above which to crop the data.
        lower: The probability below which to crop the data.
        """
        mscale.ScaleBase.__init__(self)
        upper = kwargs.pop("upper", 98) #Default to an upper bound of 98%
        if upper <= 0 or upper >= 100:
            raise ValueError("upper must be between 0 and 100.")
        lower = kwargs.pop("lower", 0.2) #Default to a lower bound of .2%
        if lower <= 0 or lower >= 100:
            raise ValueError("lower must be between 0 and 100.")
        if lower >= upper:
            raise ValueError("lower must be strictly less than upper!.")
        self.lower = lower
        self.upper = upper

        #This scale is best described by the CDF of the normal distribution
        #This distribution is paramaterized by mu and sigma, these default vaules
        #are provided to work generally well, but can be adjusted by the user if desired
        mu = kwargs.pop("mu", 15)
        sigma = kwargs.pop("sigma", 40)
        self.mu = mu
        self.sigma = sigma
        #Need to enfore the upper and lower limits on the axes initially
        axis.axes.set_xlim(lower,upper)

    def get_transform(self):
        """
        Override this method to return a new instance that does the
        actual transformation of the data.

        The ProbTransform class is defined below as a
        nested class of this one.
        """
        return self.ProbTransform(self.lower, self.upper, self.mu, self.sigma)

    def set_default_locators_and_formatters(self, axis):
        """
        Override to set up the locators and formatters to use with the
        scale.  This is only required if the scale requires custom
        locators and formatters.  Writing custom locators and
        formatters: many helpful examples in ``ticker.py``.

        In this case, the prob_scale uses a fixed locator from
        0.1 to 99 % and a custom no formatter class

        This builds both the major and minor locators, and cuts off any values
        above or below the user defined thresholds: upper, lower
        """
        #major_ticks = np.asarray([.2,.5,1,2,5,10,20,30,40,50,60,70,80,90,95,98])
        major_ticks = np.asarray([.2,1,2,5,10,20,30,40,50,60,70,80,90,98]) #removed a couple ticks to make it look nicer
        major_ticks = major_ticks[np.where( (major_ticks >= self.lower) & (major_ticks <= self.upper) )]

        minor_ticks = np.concatenate( [np.arange(.2, 1, .1), np.arange(1, 2, .2), np.arange(2,20,1), np.arange(20, 80, 2), np.arange(80, 98, 1)] )
        minor_ticks = minor_ticks[np.where( (minor_ticks >= self.lower) & (minor_ticks <= self.upper) )]
        axis.set_major_locator(FixedLocator(major_ticks))
        axis.set_minor_locator(FixedLocator(minor_ticks))


    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Override to limit the bounds of the axis to the domain of the
        transform.  In the case of Probability, the bounds should be
        limited to the user bounds that were passed in.  Unlike the
        autoscaling provided by the tick locators, this range limiting
        will always be adhered to, whether the axis range is set
        manually, determined automatically or changed through panning
        and zooming.
        """
        return max(self.lower, vmin), min(self.upper, vmax)

    class ProbTransform(mtransforms.Transform):
        # There are two value members that must be defined.
        # ``input_dims`` and ``output_dims`` specify number of input
        # dimensions and output dimensions to the transformation.
        # These are used by the transformation framework to do some
        # error checking and prevent incompatible transformations from
        # being connected together.  When defining transforms for a
        # scale, which are, by definition, separable and have only one
        # dimension, these members should always be set to 1.
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, upper, lower, mu, sigma):
            mtransforms.Transform.__init__(self)
            self.upper = upper
            self.lower = lower
            self.mu = mu
            self.sigma = sigma

        def transform_non_affine(self, a):
            """
            This transform takes an Nx1 ``numpy`` array and returns a
            transformed copy.  Since the range of the Probability scale
            is limited by the user-specified threshold, the input
            array must be masked to contain only valid values.
            ``matplotlib`` will handle masked arrays and remove the
            out-of-range data from the plot.  Importantly, the
            ``transform`` method *must* return an array that is the
            same shape as the input array, since these values need to
            remain synchronized with values in the other dimension.
            """

            masked = np.ma.masked_where( (a < self.upper) & (a > self.lower) , a)
            #Get the CDF of the normal distribution located at mu and scaled by sigma
            #Multiply these by 100 to put it into a percent scale
            cdf = norm.cdf(masked, self.mu, self.sigma)*100
            return cdf

        def inverted(self):
            """
            Override this method so matplotlib knows how to get the
            inverse transform for this transform.
            """
            return ProbScale.InvertedProbTransform(self.lower, self.upper, self.mu, self.sigma)

    class InvertedProbTransform(mtransforms.Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, lower, upper, mu, sigma):
            mtransforms.Transform.__init__(self)
            self.lower = lower
            self.upper = upper
            self.mu = mu
            self.sigma = sigma

        def transform_non_affine(self, a):
            #Need to get the PPF value for a, which is in a percent scale [0,100], so move back to probability range [0,1]
            inverse = norm.ppf(a/100, self.mu, self.sigma)
            return inverse

        def inverted(self):
            return ProbScale.ProbTransform(self.lower, self.upper)

# Now that the Scale class has been defined, it must be registered so
# that ``matplotlib`` can find it.
mscale.register_scale(ProbScale)

另外,为了获得所需的y轴结果,我发现对数刻度确实可以通过一些额外的调整来获得合理的图形。这是用于强制日志刻度具有适当的次要刻度的代码:

axes.set_yscale('log', basey=10, subsy=[2,3,4,5,6,7,8,9])

然后您可以使用定位器和格式化程序修改标签:

#Adjust the yaxis labels and format
axes.yaxis.set_minor_locator(FixedLocator([200, 500, 1500, 2500, 3500, 4500, 5000, 6000, 7000, 8000, 9000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000]))
axes.yaxis.set_minor_formatter(FormatStrFormatter('%d'))
axes.yaxis.set_major_formatter(FormatStrFormatter('%d'))

所以完整的轴maninputlation看起来像这样:

axes.set_ylabel('Discharge in CFS')
axes.set_xlabel('Exceedance Probability')
plt.setp(plt.xticks()[1], rotation=45)
#Adjust the scales of the x and y axis
axes.set_yscale('log', basey=10, subsy=[2,3,4,5,6,7,8,9])
axes.set_xscale('prob_scale', upper=98, lower=.2)
#Adjust the yaxis labels and format
axes.yaxis.set_minor_locator(FixedLocator([200, 500, 1500, 2500, 3500, 4500, 5000, 6000, 7000, 8000, 9000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000]))
axes.yaxis.set_minor_formatter(FormatStrFormatter('%d'))
axes.yaxis.set_major_formatter(FormatStrFormatter('%d'))

#Finally set the y-limit of the plot to be reasonable
axes.set_ylim((0, 2*pp['Q'].max()))
#Invert the x-axis
axes.invert_xaxis()
#Turn on major and minor grid lines
axes.grid(which='both', alpha=.9)

这提供了半对数尺度概率纸图!这些轴上绘制的任何东西都是直线绘制的好的属性,表明它来自正态分布!