如何使用h5py遍历hdf5文件

时间:2015-06-30 18:44:35

标签: h5py

如何使用h5py遍历hdf5文件的所有组和数据集?

我想使用for循环或类似东西从公共根目录检索文件的所有内容。

3 个答案:

答案 0 :(得分:10)

visit()visititems()是您的朋友。参看http://docs.h5py.org/en/latest/high/group.html#Group.visit。请注意,h5py.File也是h5py.Group。示例(未测试):

def visitor_func(name, node):
    if isinstance(node, h5py.Dataset):
         # node is a dataset
    else:
         # node is a group

with h5py.File('myfile.h5', 'r') as f:
    f.visititems(visitor_func)

答案 1 :(得分:1)

这是一个非常老的线程,但是我找到了一种在Python中基本上复制h5ls命令的解决方案:

class H5ls:
    def __init__(self):
        # Store an empty list for dataset names
        self.names = []

    def __call__(self, name, h5obj):
        # only h5py datasets have dtype attribute, so we can search on this
        if hasattr(h5obj,'dtype') and not name in self.names:
            self.names += [names]


        # we have no return so that the visit function is recursive

if __name__ == "__main__":
    df = h5py.File(filename,'r')
    h5ls = H5ls()
    # this will now visit all objects inside the hdf5 file and store datasets in h5ls.names
    df.visititems(h5ls) 

    df.close() 

此代码将遍历整个HDF5文件,并将所有数据集存储在h5ls.names中,希望对您有所帮助!

答案 2 :(得分:0)

嗯,这是一个古老的线索,但我认为无论如何我都会做出贡献。这就是我在类似情况下所做的。 对于这样设置的数据结构:

[group1]
    [group2]
        dataset1
        dataset2
    [group3]
        dataset3
        dataset4

我用过:

datalist = []
def returnname(name):
    if 'dataset' in name and name not in datalist:
        return name
    else:
        return None
looper = 1
while looper == 1:
    name = f[group1].visit(returnname)
    if name == None:
        looper = 0
        continue
    datalist.append(name)

我还没有找到os.walk的h5py等价物。