I have a code for multiple OLS-regression with the Newey-West procedure.
import pandas as pd
import numpy as np
import statsmodels.api as sm
df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9],
'b':[3,5,6,2,4,6,7,8,7,8,9]})
results = sm.OLS(df.a, sm.add_constant(df.b)).fit()
new = results.get_robustcov_results(cov_type='HAC',maxlags=1)
print new.summary()
It works, but how should I change the code, if I have more variables like....
df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9],
'b':[3,5,6,2,4,6,7,8,7,8,9],
'c':[3,5,6,2,4,8,7,8,9,9,9],
'd':[3,5,6,2,5,8,8,9,8,10,9]})
... and wanted to analyse their influence on variable a, like the analysis of variable b in the original code?
How should the Code-line results = sm.OLS(df.a, sm.add_constant(df.b)).fit()
looks like?
Thanks!!
答案 0 :(得分:0)
您可以提供多个这样的变量:
results = sm.OLS(df.a, sm.add_constant(df[list('bcd')])).fit()