我有很多生成绘图的函数,通常使用ggplot2。现在,我正在生成情节并测试基础数据。但我想知道是否有合理的方法来测试该图包含我期望的图层/选项或图形元素是否符合预期。
例如:
library(ggplot2)
library(scales) # for percent()
library(testthat)
df <- data.frame(
Response = LETTERS[1:5],
Proportion = c(0.1,0.2,0.1,0.2,0.4)
)
#' @export plot_fun
plot_fun <- function(df) {
p1 <- ggplot(df, aes(Response, Proportion)) +
geom_bar(stat='identity') +
scale_y_continuous(labels = percent)
return(p1)
}
test_that("Plot returns ggplot object",{
p <- plot_fun(df)
expect_is(p,"ggplot")
})
test_that("Plot uses correct data", {
p <- plot_fun(df)
expect_that(df, equals(p$data))
})
这就是我被困的地方
test_that("Plot layers match expectations",{
p <- plot_fun(df)
expect_that(...,...)
})
test_that("Scale is labelled percent",{
p <- plot_fun(df)
expect_that(...,...)
})
也许有更直接的方法?
答案 0 :(得分:21)
这似乎是你的目标,尽管绘制参数和内容的具体要求当然会有所不同。但是对于你在这些测试之上精心设计的例子,都应该通过:
## Load the proto library for accessing sub-components of the ggplot2
## plot objects:
library(proto)
test_that("Plot layers match expectations",{
p <- plot_fun(df)
expect_is(p$layers[[1]], "proto")
expect_identical(p$layers[[1]]$geom$objname, "bar")
expect_identical(p$layers[[1]]$stat$objname, "identity")
})
test_that("Scale is labelled 'Proportion'",{
p <- plot_fun(df)
expect_identical(p$labels$y, "Proportion")
})
test_that("Scale range is NULL",{
p <- plot_fun(df)
expect_null(p$scales$scales[[1]]$range$range)
})
这个question and its answers提供了一个很好的起点,可用于表征ggplot
个对象的其他方法,以防您有其他想要测试的内容。
答案 1 :(得分:8)
值得注意的是vdiffr包是为比较图而设计的。一个很好的功能是它与testthat软件包集成 - 它实际上用于在ggplot2中进行测试 - 它有一个RStudio的插件来帮助管理你的测试套件。
答案 2 :(得分:3)
除了现有答案之外,我还发现有用的是测试是否可以实际打印图表。
library(ggplot2)
library(scales) # for percent()
library(testthat)
# First, 'correct' data frame
df <- data.frame(
Response = LETTERS[1:5],
Proportion = c(0.1,0.2,0.1,0.2,0.4)
)
# Second data frame where column has 'wrong' name that does not match aes()
df2 <- data.frame(
x = LETTERS[1:5],
Proportion = c(0.1,0.2,0.1,0.2,0.4)
)
plot_fun <- function(df) {
p1 <- ggplot(df, aes(Response, Proportion)) +
geom_bar(stat='identity') +
scale_y_continuous(labels = percent)
return(p1)
}
# All tests succeed
test_that("Scale is labelled 'Proportion'",{
p <- plot_fun(df)
expect_true(is.ggplot(p))
expect_identical(p$labels$y, "Proportion")
p <- plot_fun(df2)
expect_true(is.ggplot(p))
expect_identical(p$labels$y, "Proportion")
})
# Second test with data frame df2 fails
test_that("Printing ggplot object actually works",{
p <- plot_fun(df)
expect_error(print(p), NA)
p <- plot_fun(df2)
expect_error(print(p), NA)
})
#> Error: Test failed: 'Printing ggplot object actually works'
#> * `print(p)` threw an error.
#> Message: object 'Response' not found
#> Class: simpleError/error/condition