如何在R中找到平衡面板数据(也就是说,如何在给定窗口中查找面板中的哪些条目是完整的)

时间:2010-06-22 19:37:01

标签: r economics

我有来自Compustat的大量数据。我正在添加一些手工收集的数据(严肃地从一堆旧书中手工收集)。但我不想手工收集整个面板,只是随机选择的子集。为了找到更大的集合(我随机选择),我想从Compustat的平衡面板开始。

我看到plm库用于处理不平衡的面板,但我想保持平衡。有没有一种干净的方法可以做到这一点,而不是寻找并抛弃不运行样本期的公司(panelpeak中的个人)?谢谢!

4 个答案:

答案 0 :(得分:1)

经过一番思考,有一种更简单的方法可以做到这一点。

看看这个:

data.with.only.complete.subjects.data <- function(xx, subject.column, number.of.observation.a.subject.should.have)
{
    subjects <- xx[,subject.column]
    num.of.observations.per.subject <- table(subjects)
    subjects.to.keep <- names(num.of.observations.per.subject)[num.of.observations.per.subject == number.of.observation.a.subject.should.have]

    subset.by.me <- subjects %in%   subjects.to.keep

    new.xx <- xx[subset.by.me ,]

    return(new.xx)
}

xx <- data.frame(subject = rep(1:4, each = 3),
            observation.per.subject = rep(rep(1:3), 4))
xx.mis <- xx[-c(2,5),]

data.with.only.complete.subjects.data(xx.mis , 1, 3)

答案 1 :(得分:0)

更新:我认为这个解决方案不如我上面发布的另一个解决方案好,但我将其作为解决方案的一个示例 - 这不太好:) *

嗨Rishard,

提供一些样本数据有点困难。

但听起来你可以使用“reshape”包中的“melt”和“cast”来重塑你的数据。这样做可以让您找到每个主题观察次数过少的地方,然后使用该信息对数据进行分组。

以下是如何完成此操作的示例代码:

xx <- data.frame(subject = rep(1:4, each = 3),
            observation.per.subject = rep(rep(1:3), 4))
xx.mis <- xx[-c(2,5),]

require(reshape)


num.of.obs.per.subject <- cast(xx.mis, subject ~.)
the.number <- num.of.obs.per.subject[,2]
subjects.to.keep <- num.of.obs.per.subject[,1] [the.number  == 3]

ss.index.of.who.to.keep <- xx.mis $subject %in% subjects.to.keep 

xx.to.work.with <- xx.mis[ss.index.of.who.to.keep ,]


xx.to.work.with 

干杯,

塔尔

答案 2 :(得分:0)

现在看一下,我丢失了一些数据的格式,但我可以稍后解决。这是我尝试采用小组的平衡部分:

    > data <- read.csv("223601533.csv")
> head(data)
  gvkey indfmt  datafmt consol popsrc fyear fyr datadate exchg         isin
1  2721   INDL HIST_STD      C      I  2000  12 20001231   264 JP3242800005
2  2721   INDL HIST_STD      C      I  2001  12 20011231   264 JP3242800005
3  2721   INDL HIST_STD      C      I  2002  12 20021231   264 JP3242800005
4  2721   INDL HIST_STD      C      I  2003  12 20031231   264 JP3242800005
5  2721   INDL HIST_STD      C      I  2004  12 20041231   264 JP3242800005
6  2721   INDL HIST_STD      C      I  2005  12 20051231   264 JP3242800005
    sedol      conm costat fic
1 6172323 CANON INC      A JPN
2 6172323 CANON INC      A JPN
3 6172323 CANON INC      A JPN
4 6172323 CANON INC      A JPN
5 6172323 CANON INC      A JPN
6 6172323 CANON INC      A JPN
> 
> obs.all <- tabulate(data$gvkey) # incl lots of zeros for unused gvkey
> num.obs <- tabulate(obs.all)
> mode.num.obs <- which(num.obs == max(num.obs))
> nt.bal <- num.obs[mode.num.obs] * mode.num.obs
> pot.obs <- which(obs.all == mode.num.obs)
> data.bal <- as.data.frame(matrix(NA, nrow=nt.bal, ncol=ncol(data)))
> colnames(data.bal) <- colnames(data)
> 
> for(i in 1:length(pot.obs)) {
+   last.row <- i * mode.num.obs
+   first.row <- last.row - (mode.num.obs - 1)
+   data.bal[first.row:last.row, ] <- subset(data, gvkey == pot.obs[i])
+ }
> 
> head(data.bal)
  gvkey indfmt datafmt consol popsrc fyear fyr datadate exchg isin sedol conm
1  2721      2       1      1      1  2000  12 20001231   264  875   359  331
2  2721      2       1      1      1  2001  12 20011231   264  875   359  331
3  2721      2       1      1      1  2002  12 20021231   264  875   359  331
4  2721      2       1      1      1  2003  12 20031231   264  875   359  331
5  2721      2       1      1      1  2004  12 20041231   264  875   359  331
6  2721      2       1      1      1  2005  12 20051231   264  875   359  331
  costat fic
1      1   1
2      1   1
3      1   1
4      1   1
5      1   1
6      1   1
> 

答案 3 :(得分:0)

> # read data
> file.in <- "243815928.csv"
> data <- read.csv(file.in)
> 
> # find which gvkeys run the entire sample period
> obs.all <- tabulate(data$gvkey) # incl lots of zeros for unused gvkey
> num.obs <- tabulate(obs.all)
> mode.num.obs <- which(num.obs == max(num.obs))
> nt.bal <- num.obs[mode.num.obs] * mode.num.obs
> pot.obs <- which(obs.all == mode.num.obs)
> 
> # create new df w/o firms that don't run the whole sample period
> pot.obs.index <- which(data$gvkey %in% pot.obs)
> data.bal <- data[pot.obs.index, ]
> 
> # write data to csv file
> file.out <- paste(substr(file.in, 1, (nchar(file.in)-4)), "sorted.csv", sep="")
> write.csv(data.bal, file.out)