用R中的插入符号和glmnet进行逻辑回归

时间:2015-06-20 22:28:37

标签: r logistic-regression r-caret glmnet

我试图使用glmnet(用于套索)和插入符号(用于k折叠交叉验证)将逻辑回归模型拟合到我的数据中。我尝试了两种不同的语法,但它们都抛出错误:

fitControl <- trainControl(method = "repeatedcv",
                       number = 10,
                       repeats = 3,
                       verboseIter = TRUE)

# with response as a integer (0/1)
fit_logistic <- train(response ~.,
                   data = df_without,
                   method = "glmnet",
                   trControl = fitControl,
                   family = "binomial")

Error in cut.default(y, breaks, include.lowest = TRUE) : 
 invalid number of intervals

df_without$response <- as.factor(df_without$response)
# with response as a factor
fit_logistic <- train(as.matrix(df_without[1:47]), df_without$response,
              method = "glmnet",
              trControl = fitControl,
              family = "binomial")

Error in lognet(x, is.sparse, ix, jx, y, weights, offset, alpha, nobs,  : 
  NA/NaN/Inf in foreign function call (arg 5)
In addition: Warning message:
In lognet(x, is.sparse, ix, jx, y, weights, offset, alpha, nobs,  :
  NAs introduced by coercion

我是否需要将数据框转换为矩阵?

我的响应变量需要是一个因子还是只需要0/1整数?

带有df_without数据框的.Rdata文件为here

  

sessionInfo()

R version 3.2.0 (2015-04-16)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.10.1 (Yosemite)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  splines   stats     graphics  grDevices utils         datasets  methods   base     

other attached packages:
 [1] e1071_1.6-4     plyr_1.8.2      gbm_2.1.1       survival_2.38-1     glmnet_2.0-2    foreach_1.4.2  
 [7] Matrix_1.2-0    caret_6.0-47    ggplot2_1.0.1   lattice_0.20-31     lubridate_1.3.3 RJDBC_0.2-5    
[13] rJava_0.9-6     DBI_0.3.1      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.6         compiler_3.2.0      nloptr_1.0.4            class_7.3-12        iterators_1.0.7    
 [6] tools_3.2.0         digest_0.6.8        lme4_1.1-7              memoise_0.2.1       nlme_3.1-120       
[11] gtable_0.1.2        mgcv_1.8-6          brglm_0.5-9             SparseM_1.6         proto_0.3-10       
[16] BradleyTerry2_1.0-6 stringr_1.0.0       gtools_3.5.0            grid_3.2.0          nnet_7.3-9         
[21] minqa_1.2.4         reshape2_1.4.1      car_2.0-25              magrittr_1.5        scales_0.2.4       
[26] codetools_0.2-11    MASS_7.3-40         pbkrtest_0.4-2          colorspace_1.2-6    quantreg_5.11      
[31] stringi_0.4-1       munsell_0.4.2  

2 个答案:

答案 0 :(得分:1)

我遇到了同样的问题,我使用函数model.matrix修复了我的问题,以处理分类变量的编码。

尝试使用glmnet中的x参数:

as.matrix(model.matrix(response ~ .)[, -1])

我删除了拦截列,因为glmnet中的默认值是包含拦截。

答案 1 :(得分:0)

问题是数据集中有连续变量。 GLMNET需要具有二元变量因子。

如果您运行第一行代码并选择一些非连续变量,您将看到它按预期运行。