将多个pandas列合并到新列中

时间:2015-06-17 18:30:33

标签: python pandas analysis

我有一个数据框,其中一些列表明是否看到了一组调查问题。例如:

Q1_Seen    Q2_Seen    Q3_Seen    Q4_Seen
    Q1a        nan        nan        nan
    nan        Q2a        nan        nan
    nan        nan        Q3d        nan
    nan        Q2c        nan        nan

我想将这些列折叠为一列,让我们说Q_Seen,这将采取以下形式:

Q_Seen
   Q1a
   Q2a
   Q3d
   Q2c

请注意,每一行都是互斥的:如果其中一列中有值,则所有其他列都是NaN。

我尝试使用pd.concat执行此操作,但它似乎没有产生正确的结果。

3 个答案:

答案 0 :(得分:4)

试试这个:

df['Q_Seen'] = df.stack().values

>>> df

Q1_Seen    Q2_Seen    Q3_Seen     Q4_Seen     Q_Seen
    Q1a        nan        nan         nan        Q1a
    nan        Q2a        nan         nan        Q2a
    nan        nan        Q3d         nan        Q3d
    nan        Q2c        nan         nan        Q2c

答案 1 :(得分:4)

使用列式max() - 即max(axis=1) - 可以将所有值折叠为一列:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({"Q1_Seen": ['Q1a', None, None, None], "Q2_Seen": [None, "Q2a", None, "Q2c"], "Q3_Seen": [None, None, "Q3d", None],"Q4_Seen": [None, None, None, None]})

In [3]: df
Out[3]: 
  Q1_Seen Q2_Seen Q3_Seen Q4_Seen
0     Q1a    None    None    None
1    None     Q2a    None    None
2    None    None     Q3d    None
3    None     Q2c    None    None

In [4]: df['Q_Seen'] = df.max(axis=1)

In [5]: df
Out[5]: 
  Q1_Seen Q2_Seen Q3_Seen Q4_Seen Q_Seen
0     Q1a    None    None    None    Q1a
1    None     Q2a    None    None    Q2a
2    None    None     Q3d    None    Q3d
3    None     Q2c    None    None    Q2c

答案 2 :(得分:2)

以下对我有用:

df = pd.DataFrame({'Q1': [1, None, None], 'Q2': [None, 2, None], 'Q3': [None, None, 3]})
df['Q'] = df.concat([df['Q1'], df['Q2'], df['Q3']]).dropna()

可能会有一个更优雅的解决方案,但这首先出现在我脑海中。