我有这种类型的CSV文件:
12012;My Name is Mike. What is your's?;3;0
1522;In my opinion: It's cool; or at least not bad;4;0
21427;Hello. I like this feature!;5;1
我想将此数据输入da pandas.DataFrame
。
但是read_csv(sep=";")
因第2行中用户生成的消息列中的分号而引发异常(在我看来:它很酷;或者至少不坏)。所有剩余的列始终具有数字dtypes。
管理此方法最方便的方法是什么?
答案 0 :(得分:7)
处理不带引号的分隔符总是令人讨厌的。在这种情况下,由于看起来已知破碎的文本被三个正确编码的列包围,我们可以恢复。 TBH,我只是使用标准的Python阅读器并从中构建一次DataFrame:
import csv
import pandas as pd
with open("semi.dat", "r", newline="") as fp:
reader = csv.reader(fp, delimiter=";")
rows = [x[:1] + [';'.join(x[1:-2])] + x[-2:] for x in reader]
df = pd.DataFrame(rows)
产生
0 1 2 3
0 12012 My Name is Mike. What is your's? 3 0
1 1522 In my opinion: It's cool; or at least not bad 4 0
2 21427 Hello. I like this feature! 5 1
然后我们可以立即保存并正确引用:
In [67]: df.to_csv("fixedsemi.dat", sep=";", header=None, index=False)
In [68]: more fixedsemi.dat
12012;My Name is Mike. What is your's?;3;0
1522;"In my opinion: It's cool; or at least not bad";4;0
21427;Hello. I like this feature!;5;1
In [69]: df2 = pd.read_csv("fixedsemi.dat", sep=";", header=None)
In [70]: df2
Out[70]:
0 1 2 3
0 12012 My Name is Mike. What is your's? 3 0
1 1522 In my opinion: It's cool; or at least not bad 4 0
2 21427 Hello. I like this feature! 5 1