我有嘈杂的data(周期为1.8秒的峰值,每个周期为2048个二进制位),我想要计算频率并删除50Hz。我很确定我所寻找的频率是50Hz,因为我通过使用originlab
找到它。
当我尝试在python中执行相同操作时,平均峰值为~47Hz。我正在寻找教程和示例,但结果仍然相同。
import numpy as np
from scipy.fftpack import fft
from scipy.fftpack import fftfreq
import matplotlib.pyplot as plt
data = np.loadtxt('3.dat', comments="#")
t = data[:, 0]
y = data[:, 2]
len_data = len(data)
bins = 2048
plt.figure(figsize=(7, 9))
plt.subplot(211)
plt.plot(t, y, 'b-')
plt.xlabel("time[sec]")
plt.ylabel("original signal")
plt.subplot(212)
F = fft(y)
freq = fftfreq(len(t), (t[1] - t[0]))
ipos = np.where(freq > 0)
freqs = freq[ipos]
mags = np.abs(F[ipos])
plt.plot(freqs, mags, 'b-')
plt.xlabel("freq")
plt.ylabel("POWER")
plt.savefig('stoc.png')
plt.show()
有人可以帮我解决问题吗?
我必须恢复关于切断噪音的问题。当我减去频率时,信号幅度显着降低。这是对的吗?
data = np.loadtxt('3.dat', comments="#")
t = data[:, 0]
phase = data[:, 1]
y = data[:, 2]
pulse_no = data[:, 3]
len_data = len(data)
bins = 2048
ti = np.linspace(t[0], t[-1], len_data)
yi = np.interp(ti, t, y)
t, y = ti, yi
plt.figure(figsize=(10, 10))
plt.subplot(511)
plt.plot(t, y, 'b-')
plt.xlabel("time[sec]")
plt.ylabel("original signal")
plt.subplot(512)
F = fft(y)
N = len(t)
w = fftfreq(N, (t[1] - t[0]))
ipos = np.where(w > 0)
freq = w[ipos]
mags = abs(F[ipos])
plt.plot(freq, mags)
ip = np.where(F > 0)[0]
Fs = np.copy(F)
yf = ifft(Fs)
ip = np.where(F > 0)[0]
Ff = np.copy(F)
Ff[ip > ip[[(181)]]] = 0
Ff[ip < ip[[(175)]]] = 0
magsf = abs(Ff[ipos])
plt.plot(freq, magsf, 'r-')
plt.subplot(513)
Fr = mags - magsf
plt.plot(freq, Fr)
plt.subplot(514)
yf = ifft(Ff)
yr = ifft(Fr)
plt.plot(t, yf)
plt.subplot(515)
flux = y - np.real(yf)
plt.plot(t, flux)
plt.plot(t, y)
plt.show()
答案 0 :(得分:3)
你的问题似乎是你的时间网格不是均匀分布的:
In [83]: d = np.diff(data[:,0])
In [84]: d
Out[84]:
array([ 0.0006144 , 0.0006144 , 0.00049152, ..., 0.0006144 ,
0.0006144 , 0.00049152])
如果我将值插值为恒定的时间间隔:
data = np.loadtxt('3.dat', comments="#")
t = data[:, 0]
y = data[:, 2]
len_data = len(data)
ti = np.linspace(t[0], t[-1], len_data)
yi = np.interp(ti, t, y)
t, y = ti, yi
峰值为50 Hz: