Python RuntimeError:cmp中超出了最大递归深度

时间:2015-06-15 09:06:11

标签: python list dictionary recursion

我有一个复杂的数据结构,我试图处理。

数据结构的说明:我有一个类的字典。关键是一个名字。该值是类引用。该类包含两个字典列表。

这是我数据结构的一个简单示例:

import scipy.stats

class employee_salaries(object):
    def __init__(self,management, players, disparity):
        self.management = management
        self.players = players
        self.disparity = disparity

# the coach's salary was 12 his 1st year and 11 his 2nd year
mgmt1 = [{'Coach':12, 'Owner':15, 'Team Manager': 13}, {'Coach':11, 'Owner':14, 'Team Manager':15}]
plyrs1 = [{'Point Guard': 14, 'Power Forward':16,},{'Point Guard':16, 'Power Forward':18}]

NBA = {}

mgmt2 = [{'Coach':10, 'Owner':12}, {'Coach':13,'Owner':15}]
plyrs2 = [{'Point Guard':17, 'Power Forward':14}, {'Point Guard': 22, 'Power Forward':16}]

NBA['cavs'] = employee_salaries(mgmt1,plyrs1,0)
NBA['celtics'] = employee_salaries(mgmt2,plyrs2,0)

让我们说我想确定这两年来Point Guard的薪水与业主薪水之间的差距。

for key, value in NBA.iteritems():
    x1=[]; x2=[]
    num = len(NBA[key].players)
    for i in range(0,num):
        x1.append(NBA[key].players[i]['Point Guard'])
        x2.append(NBA[key].management[i]['Owner'])
    tau, p_value = scipy.stats.kendalltau(x1, x2)

    NBA[key].disparity = tau
print NBA['cavs'].disparity

请记住,这不是我的真实数据。在我的实际数据结构中,有超过150个密钥。字典列表中还有更多元素。当我在真实数据上运行上面的代码时,我收到运行时错误。

  

RuntimeError:cmp错误中超出了最大递归深度。

如何更改上面的代码,以便它不会给我一个最大的递归深度错误?我想做这种比较,并能够保存价值。

1 个答案:

答案 0 :(得分:3)

It's a bug.

Fixed in 0.15.0

你传入空数组,函数处理错误。更新你的Scipy,或者如果数组是空的则跳过(虽然检查你的数据没有错,并且那里有一个空数组是有意义的。)

您的代码的一些建议。

for team in NBA.itervalues():
#Or `for name, team in NBA.iteritems()` if you use the name.
    x1, x2 = [], []
    # Not `x1 = x2 = []`, since that would be two names for one list

    for player, manager in izip(team.players, team.management):
        x1.append(player['Point Guard'])
        x2.append(manager['Owner'])
    # Or lose the `for` loop and say:
    # `x1 = [player['Point Guard'] for player in team.players]`
    # `x2 = [manager['Owner'] for manager in team.management]`
    # (This can be more efficient.)

    tau, p_value = scipy.stats.kendalltau(x1, x2)

    team.disparity = tau

print NBA['cavs'].disparity