Thrust执行策略将内核问题发送到默认流

时间:2015-06-13 11:07:19

标签: concurrency cuda thrust cuda-streams

我目前正在设计一个简短的教程,展示Thrust模板库的各个方面和功能。

不幸的是,似乎我编写的代码中存在一个问题,以便展示如何使用cuda流来使用复制/计算并发。

我的代码可以在asynchronousLaunch目录中找到: https://github.com/gnthibault/Cuda_Thrust_Introduction/tree/master/AsynchronousLaunch

以下是生成问题的代码摘要:

//STL
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <vector>
#include <functional>

//Thrust
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/execution_policy.h>
#include <thrust/scan.h>

//Cuda
#include <cuda_runtime.h>

//Local
#include "AsynchronousLaunch.cu.h"

int main( int argc, char* argv[] )
{
    const size_t fullSize = 1024*1024*64;
    const size_t halfSize = fullSize/2;

    //Declare one host std::vector and initialize it with random values
    std::vector<float> hostVector( fullSize );
    std::generate(hostVector.begin(), hostVector.end(), normalRandomFunctor<float>(0.f,1.f) );

    //And two device vector of Half size
    thrust::device_vector<float> deviceVector0( halfSize );
    thrust::device_vector<float> deviceVector1( halfSize );

    //Declare  and initialize also two cuda stream
    cudaStream_t stream0, stream1;
    cudaStreamCreate( &stream0 );
    cudaStreamCreate( &stream1 );

    //Now, we would like to perform an alternate scheme copy/compute
    for( int i = 0; i < 10; i++ )
    {
        //Wait for the end of the copy to host before starting to copy back to device
        cudaStreamSynchronize(stream0);
        //Warning: thrust::copy does not handle asynchronous behaviour for host/device copy, you must use cudaMemcpyAsync to do so
        cudaMemcpyAsync(thrust::raw_pointer_cast(deviceVector0.data()), thrust::raw_pointer_cast(hostVector.data()), halfSize*sizeof(float), cudaMemcpyHostToDevice, stream0);
        cudaStreamSynchronize(stream1);
        //second copy is most likely to occur sequentially after the first one
        cudaMemcpyAsync(thrust::raw_pointer_cast(deviceVector1.data()), thrust::raw_pointer_cast(hostVector.data())+halfSize, halfSize*sizeof(float), cudaMemcpyHostToDevice, stream1);

        //Compute on device, here inclusive scan, for histogram equalization for instance
        thrust::transform( thrust::cuda::par.on(stream0), deviceVector0.begin(), deviceVector0.end(), deviceVector0.begin(), computeFunctor<float>() );
        thrust::transform( thrust::cuda::par.on(stream1), deviceVector1.begin(), deviceVector1.end(), deviceVector1.begin(), computeFunctor<float>() );

        //Copy back to host
        cudaMemcpyAsync(thrust::raw_pointer_cast(hostVector.data()), thrust::raw_pointer_cast(deviceVector0.data()), halfSize*sizeof(float), cudaMemcpyDeviceToHost, stream0);
        cudaMemcpyAsync(thrust::raw_pointer_cast(hostVector.data())+halfSize, thrust::raw_pointer_cast(deviceVector1.data()), halfSize*sizeof(float), cudaMemcpyDeviceToHost, stream1);
    }

    //Full Synchronize before exit
    cudaDeviceSynchronize();

    cudaStreamDestroy( stream0 );
    cudaStreamDestroy( stream1 );

    return EXIT_SUCCESS;
}

以下是通过nvidia视觉资料观察到的一个程序实例的结果:

Kernels are issued to default stream

你可以看到,cudamemcopy(棕色)都发布到第13和第14流,但是Thrust从thrust :: transform生成的内核被发送到默认流(捕获中为蓝色)

顺便说一句,我使用的是cuda toolkit版本7.0.28,带有GTX680和gcc 4.8.2。

如果有人能告诉我我的代码有什么问题,我将不胜感激。

提前谢谢

编辑:这是我认为是解决方案的代码:

//STL
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <functional>
#include <vector>


//Thrust
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/execution_policy.h>


//Cuda
#include <cuda_runtime.h>

//Local definitions

template<typename T>
struct computeFunctor
{
    __host__ __device__
    computeFunctor() {}

    __host__ __device__
    T operator()( T in )
    {
        //Naive functor that generates expensive but useless instructions
        T a =  cos(in);
        for(int i = 0; i < 350; i++ )
        {
            a+=cos(in);
        }
        return a;
    }
};

int main( int argc, char* argv[] )
{
    const size_t fullSize =  1024*1024*2;
    const size_t nbOfStrip = 4;
    const size_t stripSize =  fullSize/nbOfStrip;

    //Allocate host pinned memory in order to use asynchronous api and initialize it with random values
    float* hostVector;
    cudaMallocHost(&hostVector,fullSize*sizeof(float));
    std::fill(hostVector, hostVector+fullSize, 1.0f );

    //And one device vector of the same size
    thrust::device_vector<float> deviceVector( fullSize );

    //Declare  and initialize also two cuda stream
    std::vector<cudaStream_t> vStream(nbOfStrip);
    for( auto it = vStream.begin(); it != vStream.end(); it++ )
    {
        cudaStreamCreate( &(*it) );
    }

    //Now, we would like to perform an alternate scheme copy/compute in a loop using the copyToDevice/Compute/CopyToHost for each stream scheme:
    for( int i = 0; i < 5; i++ )
    {
        for( int j=0; j!=nbOfStrip; j++)
        {
            size_t offset = stripSize*j;
            size_t nextOffset = stripSize*(j+1);
            cudaStreamSynchronize(vStream.at(j));
            cudaMemcpyAsync(thrust::raw_pointer_cast(deviceVector.data())+offset, hostVector+offset, stripSize*sizeof(float), cudaMemcpyHostToDevice, vStream.at(j));
            thrust::transform( thrust::cuda::par.on(vStream.at(j)), deviceVector.begin()+offset, deviceVector.begin()+nextOffset, deviceVector.begin()+offset, computeFunctor<float>() );
            cudaMemcpyAsync(hostVector+offset, thrust::raw_pointer_cast(deviceVector.data())+offset, stripSize*sizeof(float), cudaMemcpyDeviceToHost, vStream.at(j));
        }
    }
    //On devices that do not possess multiple queues copy engine capability, this solution serializes all command even if they have been issued to different streams
    //Why ? Because in the point of view of the copy engine, which is a single ressource in this case, there is a time dependency between HtoD(n) and DtoH(n) which is ok, but there is also
    // a false dependency between DtoH(n) and HtoD(n+1), that preclude any copy/compute overlap

    //Full Synchronize before testing second solution
    cudaDeviceSynchronize();

    //Now, we would like to perform an alternate scheme copy/compute in a loop using the copyToDevice for each stream /Compute for each stream /CopyToHost for each stream scheme:
    for( int i = 0; i < 5; i++ )
    {
        for( int j=0; j!=nbOfStrip; j++)
        {
            cudaStreamSynchronize(vStream.at(j));
        }
        for( int j=0; j!=nbOfStrip; j++)
        {
            size_t offset = stripSize*j;
            cudaMemcpyAsync(thrust::raw_pointer_cast(deviceVector.data())+offset, hostVector+offset, stripSize*sizeof(float), cudaMemcpyHostToDevice, vStream.at(j));
        }
        for( int j=0; j!=nbOfStrip; j++)
        {
            size_t offset = stripSize*j;
            size_t nextOffset = stripSize*(j+1);
            thrust::transform( thrust::cuda::par.on(vStream.at(j)), deviceVector.begin()+offset, deviceVector.begin()+nextOffset, deviceVector.begin()+offset, computeFunctor<float>() );

        }
        for( int j=0; j!=nbOfStrip; j++)
        {
            size_t offset = stripSize*j;
            cudaMemcpyAsync(hostVector+offset, thrust::raw_pointer_cast(deviceVector.data())+offset, stripSize*sizeof(float), cudaMemcpyDeviceToHost, vStream.at(j));
        }
    }
    //On device that do not possess multiple queues in the copy engine, this solution yield better results, on other, it should show nearly identic results

    //Full Synchronize before exit
    cudaDeviceSynchronize();

    for( auto it = vStream.begin(); it != vStream.end(); it++ )
    {
        cudaStreamDestroy( *it );
    }
    cudaFreeHost( hostVector );

    return EXIT_SUCCESS;
}

使用nvcc编译./test.cu -o ./test.exe -std = c ++ 11

1 个答案:

答案 0 :(得分:3)

我要指出的有两件事。这两个(现在)都在this related question/answer中引用,您可能希望参考这些内容。

  1. 在这种情况下,将基础内核发布到非默认流的失败似乎与this issue有关。可以通过更新the latest thrust version来纠正(如问题评论中所述)。未来的CUDA版本(超过7个)也可能包含固定的推力。这可能是这个问题中讨论的核心问题。

  2. 这个问题似乎也表明其中一个目标是复制和计算的重叠:

    in order to show how to use copy/compute concurrency using cuda streams
    

    但这并不是可以实现的,我不会想到,即使上面的第1项是固定的,目前制作的代码也是如此。使用计算操作重叠副本需要在复制操作(cudaMemcpyAsyncas well as a pinned host allocation上正确使用cuda流。问题中提出的代码是没有使用固定主机分配(std::vector默认情况下不使用固定分配器,AFAIK),所以我不希望cudaMemcpyAsync操作与任何重叠内核活动,即使它应该是可能的。为了纠正这个问题,应该使用固定分配器,并给出一个这样的例子here

  3. 为了完整起见,问题是缺少MCVE,即expected for questions of this type。这使得其他人更难以尝试测试您的问题,并且明确是SO的一个接近原因。是的,你提供了一个外部github仓库的链接,但这种行为令人不悦。 MCVE要求明确指出必要的部分应该包含在问题本身(而不是外部参考)。由于唯一缺少的部分,AFAICT,是#34; AsynchronousLaunch.cu.h&#34;,它似乎会在你的问题中包含这一个额外的部分是相对简单的。外部链接的问题在于,当它们在将来中断时,问题对于未来的读者来说变得不那么有用了。 (并且,在我看来,强迫其他人浏览外部github仓库寻找特定文件不利于获得帮助。)