我一直在对OpenMP进行一些测试,并且由于错误共享数组“sum”而使得这个程序无法扩展。我遇到的问题是它确实可以扩展。甚至“更糟糕”:
我真的没有通过英特尔编译器获得从2个线程到4个线程的加速。但最重要的是:为什么缩放如此好,即使它应该表现出错误的共享?
#include <iostream>
#include <chrono>
#include <array>
#include <omp.h>
int main(int argc, const char *argv[])
{
const auto nb_threads = std::size_t{4};
omp_set_num_threads(nb_threads);
const auto num_steps = std::size_t{1000000000};
const auto step = double{1.0 / num_steps};
auto sum = std::array<double, nb_threads>{0.0};
std::size_t actual_nb_threads;
auto start_time = std::chrono::high_resolution_clock::now();
#pragma omp parallel
{
const auto id = std::size_t{omp_get_thread_num()};
if (id == 0) {
// This is needed because OMP might give us less threads
// than the numbers of threads requested
actual_nb_threads = omp_get_num_threads();
}
for (auto i = std::size_t{0}; i < num_steps; i += nb_threads) {
auto x = double{(i + 0.5) * step};
sum[id] += 4.0 / (1.0 + x * x);
}
}
auto pi = double{0.0};
for (auto id = std::size_t{0}; id < actual_nb_threads; id++) {
pi += step * sum[id];
}
auto end_time = std::chrono::high_resolution_clock::now();
auto time = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count();
std::cout << "Pi: " << pi << std::endl;
std::cout << "Time: " << time / 1.0e9 << " seconds" << std::endl;
std::cout << "Total nb of threads actually used: " << actual_nb_threads << std::endl;
return 0;
}
答案 0 :(得分:7)
如果编译器选择以这种方式实现它,那么代码肯定可以展示错误共享。但这对编译器来说是一件愚蠢的事情。
在第一个循环中,每个线程只访问sum
的一个元素。没有理由对存储该元素的实际堆栈内存进行num_steps
写入;将值保存在寄存器中要快得多,并在for循环结束后将其写回。由于数组不是易失性的或原子的,因此没有什么能阻止编译器以这种方式运行。
当然,在第二个循环中没有写入数组,所以没有错误的共享。