我遇到了一个相当奇怪的openMP问题。
任务是获取字符串向量并将每个元素拆分为其包含的k-Mers(所有包含长度为k的子字符串)。这应该沿着向量的元素平行地并行化,因为k-Merification过程对于每个元素独立地发生。我想将结果存储在map / set STL数据结构(std::map<long long, std::map<std::string, std::set<unsigned int> > > local_forReturn
)中,并为此分配一个线程局部变量。
然而,实现的并行化行为非常糟糕 - 尽管在40核计算机上运行了40个线程,但Linux上的顶级显示CPU使用率约为200%。 (我已经测试过#omp critical
部分不是瓶颈)。
我的预感是这可能与错误共享有关,因为我的本地化map / set STL类中包含的实际数据将最终在堆上。但是,我既不知道如何测试我的直觉,也不知道如何减少STL结构的错误共享(如果这是问题)。我非常感谢任何想法!
完整代码:
#include <string>
#include <assert.h>
#include <set>
#include <map>
#include <vector>
#include <omp.h>
#include <iostream>
int threads = 40;
int k = 31;
std::string generateRandomSequence(int length);
char randomNucleotide();
std::vector<std::string> partitionStringIntokMers(std::string str, int k);
int main(int argc, char *argv[])
{
// generate test data
std::vector<std::string> requiredSEQ;
for(unsigned int i = 0; i < 10000; i++)
{
std::string seq = generateRandomSequence(20000);
requiredSEQ.push_back(seq);
}
// this variable will contain the final result
std::map<long long, std::map<std::string, std::map<unsigned int, int> > > forReturn;
omp_set_num_threads(threads);
std::cerr << "Data generated, now start parallel processing\n" << std::flush;
// split workload (ie requiredSEQ) according to number of threads
long long max_i = requiredSEQ.size() - 1;
long long chunk_size = max_i / threads;
#pragma omp parallel
{
assert(omp_get_num_threads() == threads);
long long thisThread = omp_get_thread_num();
long long firstPair = thisThread * chunk_size;
long long lastPair = (thisThread+1) * chunk_size - 1;
if((thisThread == (threads-1)) && (lastPair < max_i))
{
lastPair = max_i;
}
std::map<long long, std::map<std::string, std::map<unsigned int, int> > > local_forReturn;
for(long long seqI = firstPair; seqI <= lastPair; seqI++)
{
const std::string& SEQ_sequence = requiredSEQ.at(seqI);
const std::vector<std::string> kMersInSegment = partitionStringIntokMers(SEQ_sequence, k);
for(unsigned int kMerI = 0; kMerI < kMersInSegment.size(); kMerI++)
{
const std::string& kMerSeq = kMersInSegment.at(kMerI);
local_forReturn[seqI][kMerSeq][kMerI]++;
}
}
#pragma omp critical
{
forReturn.insert(local_forReturn.begin(), local_forReturn.end());
}
}
return 0;
}
std::string generateRandomSequence(int length)
{
std::string forReturn;
forReturn.resize(length);
for(int i = 0; i < length; i++)
{
forReturn.at(i) = randomNucleotide();
}
return forReturn;
}
char randomNucleotide()
{
char nucleotides[4] = {'A', 'C', 'G', 'T'};
int n = rand() % 4;
assert((n >= 0) && (n <= 3));
return nucleotides[n];
}
std::vector<std::string> partitionStringIntokMers(std::string str, int k)
{
std::vector<std::string> forReturn;
if((int)str.length() >= k)
{
forReturn.resize((str.length() - k)+1);
for(int i = 0; i <= (int)(str.length() - k); i++)
{
std::string kMer = str.substr(i, k);
assert((int)kMer.length() == k);
forReturn.at(i) = kMer;
}
}
return forReturn;
}