我有这个载体
ID var2 ID var2 var1 ID var2 ID var3
"1000" "1" "1001" "1" "1" "1002" "7" "1003" "3"
可以从
获得x=c("1000","1","1001","1","1","1002","7","1003","3")
names(x)=c("ID","var2","ID","var2","var1","ID","var2","ID","var3")
我将它转换为维度4x4的矩阵:
ID var1 var2 var3
"1000" NA "1" NA
"1001" "1" "1" NA
"1002" NA "7" NA
"1003" NA NA "3"
你能帮我吗?
答案 0 :(得分:3)
我们可以split
向量' x'通过基于“ID'”match
出现的分组向量,将唯一名称(' nm1')与order
列表元素的名称和然后rbind
获得预期的输出
nm1 <- sort(unique(names(x)))
do.call(rbind,lapply(split(x, cumsum(grepl('ID', names(x)))), function(y)
setNames(y[match(nm1, names(y))], nm1)
))
# ID var1 var2 var3
#1 "1000" NA "1" NA
#2 "1001" "1" "1" NA
#3 "1002" NA "7" NA
#4 "1003" NA NA "3"
创建空矩阵后使用row/col
索引。
indx <- match(names(x), nm1)
m1 <- matrix(, nrow= max(tabulate(indx)), ncol=length(nm1),
dimnames=list(NULL, nm1))
m1[cbind(cumsum(indx==1), indx)] <- x
答案 1 :(得分:2)
既不漂亮也不快,但您可以使用data.table::rbindlist
library(data.table)
# Create list of lists splitting data by ID and convert to data.table
dt <- rbindlist(tapply(x, cumsum(names(x) == "ID"), as.list), fill=TRUE)
# Ensure column order
setcolorder(dt, c('ID', 'var1', 'var2', 'var3'))
# Convert to matrix
as.matrix(dt)