我有一个矢量nodenames为
nodenames <- c("A","B","C","T","N","Z")
我有一个带有dimnames的方形稀疏矩阵
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:4149962] 1 2 3 4 5 9 11 12 13 14 ...
..@ p : int [1:3417] 0 1702 2710 3935 5411 6719 8141 9822 9822 11515 ...
..@ Dim : int [1:2] 3416 3416
..@ Dimnames:List of 2
.. ..$ : chr [1:3416] "A" "B" "AAL" "T" ...
.. ..$ : chr [1:3416] "A" "B" "AAL" "T" ...
..@ x : num [1:4149962] 2 1 1 3 1 1 2 19 3 2 ...
..@ factors : list()
如何在nodenames中使用dimnames生成此矩阵的子集?
答案 0 :(得分:4)
您可以根据索引号,维度名称(通过字符向量,例如nodenames
),逻辑向量以及可能超出我的其他内容来对矩阵进行子集化。
mat1[nodenames, nodenames]
A B C T N Z
A 12 22 42 62 72 82
B 13 23 43 63 73 83
C 15 25 45 65 75 85
T 17 27 47 67 77 87
N 18 28 48 68 78 88
Z 19 29 49 69 79 89
或:
mat1[which(rownames(mat1)%in% nodenames), which(colnames(mat1) %in% nodenames)]
mat1[rownames(mat1)%in% nodenames, colnames(mat1) %in% nodenames]
答案 1 :(得分:1)
我认为Tim Riffe的回答是最直接的。如果用户不确定'nodenames'向量是否是rownames()和colnames()值的子集,那么这可能会更安全一点:
nodenames <- c("A","ZZ","C","T","N","Z")
seq1 <- seq(1:100)
mat1 <- matrix(seq1, 10)
rownames(mat1)<-c("G","A","B","F","C","D","T","N","Z","J")
colnames(mat1)<-c("G","A","B","F","C","D","T","N","Z","J")
mat1[rownames(mat1) %in% nodenames, colnames(mat1) %in% nodenames]
#----------
A C T N Z
A 12 42 62 72 82
C 15 45 65 75 85
T 17 47 67 77 87
N 18 48 68 78 88
Z 19 49 69 79 89
对于类-dgCMatrix对象的修正问题,我使用相同的方法得到了明智的结果:
(m <- Matrix(c(0,0,2:0), 3,5))
3 x 5 sparse Matrix of class "dgCMatrix"
[1,] . 1 . . 2
[2,] . . 2 . 1
[3,] 2 . 1 . .
m@Dimnames <- list(X=letters[1:3], Y=LETTERS[1:5])
m["a", "B"]
# [1] 1
m["a", c("A","B")]
# A B
# 0 1