我的2D FFT算法正在输出正确的值,但它们的顺序错误。例如,输入:
1050.0 1147.0 1061.0 1143.0
1046.0 1148.0 1118.0 1073.0
1072.0 1111.0 1154.0 1101.0
1078.0 1101.0 1106.0 1062.0
采用FFT,然后反FFT得到:
1050.0 1143.0 1061.0 1147.0
1078.0 1062.0 1106.0 1101.0
1072.0 1101.0 1154.0 1111.0
1046.0 1073.0 1118.0 1148.0
你可以看到,如果你水平翻转最后3列,那么垂直最后3行,数据将是正确的。据我所知,对于所有输入大小都是如此,所以这是一个简单的(虽然是hacky)修复。然而,我担心修复的计算时间,因为我可能不得不在1024x1024或甚至2048x2048图像上执行此操作。
我相信我的1D FFT算法doFFT()
是正确的,并且我得到了前向2D FFT的预期值。只是反向2D FFT导致了我的麻烦。
有人看到我的错误在哪里吗?
代码
private static double[] cose;
private static double[] sin;
public static void main(String[] args) {
float[][] img = new float[][]{
{ 1050.0f, 1147.0f, 1061.0f, 1143.0f},
{ 1046.0f, 1148.0f, 1118.0f, 1073.0f},
{ 1072.0f, 1111.0f, 1154.0f, 1101.0f},
{ 1078.0f, 1101.0f, 1106.0f, 1062.0f}
};
int size = img.length;
System.out.println("Image");
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j++)
{
System.out.print(img[i][j] + "\t");
}
System.out.println();
}
Complex[][] fft = fft2D(toComplex(img), false);
Complex[][] inverse = fft2D(fft, true);
System.out.println("\nInverse");
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j++)
{
System.out.print(inverse[i][j].getReal() + "\t");
}
System.out.println();
}
}
public static Complex[][] fft2D(Complex[][] pixels, boolean inverse){
int size = pixels.length;
computeCosSin(size);
Complex[][] data = transpose(pixels.clone());
Complex[] temp;
// FFT of rows
for (int i = 0; i < size; i++)
{
temp = doFFT(data[i], size);
data[i] = temp;
}
// FFT of columns
for (int i = 0; i < size; i++)
{
temp = new Complex[size];
for (int j = 0; j < size; j++)
{
temp[j] = data[j][i];
}
Complex[] temp2 = doFFT(temp, size);
for (int j = 0; j < size; j++)
{
data[j][i] = temp2[j];
}
}
if (!inverse)
{
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j++)
{
data[i][j] = data[i][j].divide(size*size);
}
}
}
return data;
}
public static Complex[] doFFT(Complex[] data, int size){
Complex[] temp = new Complex[size];
int j = 0;
for (int i = 0; i < size; i++) {
temp[i] = data[j];
int k = size / 2;
while ((j >= k) && (k > 0)) {
j -= k;
k /= 2;
}
j += k;
}
Complex n,m,h,f;
for(int i=0; i<size;i+=4){
n = temp[i].add(temp[i+1]);
m = temp[i+2].add(temp[i+3]);
h = temp[i].subtract(temp[i+1]);
f = temp[i+2].subtract(temp[i+3]);
Complex mult = h.add(f.multiply(Complex.I));
Complex sub = h.subtract(f.multiply(Complex.I));
temp[i] = n.add(m);
temp[i+2] = n.subtract(m);
temp[i+1] = sub;
temp[i+3] = mult;
}
int u;
for(int i=4; i< size;i<<=1){
int v = size/(i <<1);
for(int c=0; c< size;c +=i<<1){
for(int x=0; x < i; x++){
u = v*x;
double calc = temp[i+c+x].getReal()*cose[u] - temp[i+c+x].getImaginary()*sin[u];
double calc2 = temp[i+c+x].getReal()*sin[u] + temp[i+c+x].getImaginary()*cose[u];
Complex fftArray = new Complex(calc,calc2);
temp[(i+c+x)] =temp[(c+x)].subtract(fftArray);
temp[(c+x)] = temp[(c+x)].add(fftArray);
}
}
}
return temp;
}
public static Complex[][] toComplex(float[][] arr)
{
Complex[][] newArr = new Complex[arr.length][arr.length];
for (int i = 0; i < arr.length; i++)
{
for (int j = 0; j < arr.length; j++)
{
newArr[i][j] = new Complex(arr[i][j], 0.0);
}
}
return newArr;
}
public static Complex[][] transpose(Complex[][] array)
{
for (int i = 0; i < array.length; i++)
{
for (int j = i+1; j < array[i].length; j++)
{
Complex temp = array[i][j];
array[i][j] = array[j][i];
array[j][i] = temp;
}
}
return array;
}
public static void computeCosSin(int size){
double num = (2.0*Math.PI)/size;
double cos = Math.cos(num);
double sine = Math.sin(num);
cose = new double[size];
sin = new double[size];
cose[0] =1.0;
for(int i=1; i<size;i++){
cose[i] = cos*cose[i-1] + sine*sin[i-1];
sin[i] = cos*sin[i-1] - sine*cose[i-1];
}
}
}
答案 0 :(得分:0)
这并不能解决根本问题,但它确实会改变我所获得的数据,因此它现在可以满足我的目的。我担心它在大型阵列上会非常慢。
该函数将行i与行N-i交换,然后将每列i与列N-i交换,0 <&lt;我&lt; N,(假设一个正方形,2输入数组的幂)
public Complex[][] inverseFix(Complex[][] array)
{
int size = array.length;
// Swap rows
Complex[] temp;
for (int i = 1; i < size/2; i++)
{
temp = array[i];
array[i] = array[size-i];
array[size-i] = temp;
}
// Swap columns
Complex temp2;
for (int i = 0; i < size; i++)
{
for (int j = 1; j < size/2; j++)
{
temp2 = array[i][j];
array[i][j] = array[i][size-j];
array[i][size-j] = temp2;
}
}
return array;
}