问题是写一个通用规则来找到任何级别的亲戚!
cousin(N,Child1,Child2).
如果Child1和Child2是Nth堂兄弟,那么这是真的。所以 cousin1(Child1,Child2)=堂兄(1,Child1,Child2)和 cousin2(Child1,Child2)=堂兄(2,Child1,Child2)等 为第三和第四甚至更高级别的堂兄弟。
到目前为止我所拥有的:
/* first person is parent of second person */
parent(a, b).
parent(b, f).
parent(a, d).
parent(f, g).
parent(a, k).
parent(f, h).
parent(k, l).
parent(f, i).
parent(k, m).
parent(l, t).
parent(b, e).
sibling(X,Y) :- parent(Z,X), parent(Z,Y), not(X=Y).
grandparent(X, Z) :-
parent(X, Y),
parent(Y, Z).
greatgrandparent(X, Z) :-
parent(X, Y),
parent(Y, P),
parent(P, Z).
cousin1(Child1,Child2) :-
parent(Y1,Child1),
parent(Y2,Child2),
sibling(Y1,Y2).
cousin2(Child1,Child2) :-
greatgrandparent(Z, Child1),
greatgrandparent(Z, Child2),
\+sibling(Child1, Child2),
\+cousin1(Child1, Child2),
Child1 \= Child2.
无论输入什么值,都会返回false,所以显然我不知道我在做什么请帮助!
cousin(N,Child1,Child2) :-
nth0(N, parent(Y1,Child1),Y1),
nth0(N, parent(Y2,Child2),Y2),
cousin1(Y1,Y2).
答案 0 :(得分:1)
我试过了:
% first person is parent of second person
parent(a, b).
parent(b, f).
parent(a, d).
parent(f, g).
parent(a, k).
parent(f, h).
parent(k, l).
parent(f, i).
parent(k, m).
parent(l, t).
parent(b, e).
sibling(Sib1,Sib2) :- parent(SomeParent,Sib1),
parent(SomeParent,Sib2),
\+ Sib1 = Sib2.
% first person is ancestor of second person
ancestor(Older,Younger,L) :-
parent(Older,Younger),
L is 1.
ancestor(Older,Younger,Level) :-
parent(Older,Child),
ancestor(Child,Younger,L),
Level is L + 1.
%nth_cousin(Level,Cous1,Cous2) :-
% ancestor(Sib1,Cous1,Level),
% ancestor(Sib2,Cous2,Level),
% sibling(Sib1,Sib2).
nth_cousin(Level,Cous1,Cous2) :-
setof((Cous1,Cous2), Sib1^Sib2^(ancestor(Sib1,Cous1,Level),
ancestor(Sib2,Cous2,Level),
sibling(Sib1,Sib2)
),
Cousins),
member((Cous1,Cous2), Cousins),
\+ (Cous2@<Cous1, member((Cous2,Cous1), Cousins)).
实施例
1 ?- nth_cousin(1,Cous1,Cous2).
Cous1 = e,
Cous2 = l ;
Cous1 = e,
Cous2 = m ;
Cous1 = f,
Cous2 = l ;
Cous1 = f,
Cous2 = m ;
false.
2 ?- nth_cousin(2,Cous1,Cous2).
Cous1 = g,
Cous2 = t ;
Cous1 = h,
Cous2 = t ;
Cous1 = i,
Cous2 = t ;
false.