我有以下2个数据帧(df_a,df_b):
df_a
N0_YLDF
0 11.79
1 7.86
2 5.78
3 5.35
4 6.32
5 11.79
6 6.89
7 10.74
df_b
N0_YLDF N0_DWOC
0 6.29 4
1 2.32 4
2 9.10 4
3 4.89 4
4 10.22 4
5 3.80 3
6 5.55 3
7 6.36 3
我想在df_a中添加一列N0_DWOC,这样该列中的值来自df_a ['N0_YLDF']最接近df_b ['N0_YLDF']的行。
现在,我正在做一个简单的合并,但这并不是我想做的事情
答案 0 :(得分:3)
您可以在df_b['N0_YLDF']
中找到(排序)值之间的截止值。然后调用pd.cut
对df_a['N0_YLDF']
中的值进行分类,其中截止值为bin边缘:
import numpy as np
import pandas as pd
df_a = pd.DataFrame({ 'N0_YLDF': [11.79, 7.86, 5.78, 5.35, 6.32, 11.79, 6.89, 10.74]})
df_b = pd.DataFrame({ 'N0_YLDF':[6.29, 2.32, 9.10, 4.89, 10.22, 3.80, 5.55, 6.36] })
edges, labels = np.unique(df_b['N0_YLDF'], return_index=True)
edges = np.r_[-np.inf, edges + np.ediff1d(edges, to_end=np.inf)/2]
df_a['N0_DWOC'] = pd.cut(df_a['N0_YLDF'], bins=edges, labels=df_b.index[labels])
print(df_a)
产量
In [293]: df_a
Out[293]:
N0_YLDF N0_DWOC
0 11.79 4
1 7.86 2
2 5.78 6
3 5.35 6
4 6.32 0
5 11.79 4
6 6.89 7
7 10.74 4
要加入N0_DWOC
上的两个数据框,您可以使用:
print(df_a.join(df_b, on='N0_DWOC', rsuffix='_b'))
产生
N0_YLDF N0_DWOC N0_YLDF_b
0 11.79 4 10.22
1 7.86 2 9.10
2 5.78 6 5.55
3 5.35 6 5.55
4 6.32 0 6.29
5 11.79 4 10.22
6 6.89 7 6.36
7 10.74 4 10.22
答案 1 :(得分:2)
另一种方法是减去笛卡尔积中的所有对,得到每个对的最小绝对值索引:
In [47]:ix = abs(np.atleast_2d(df_a['N0_YLDF']).T - df_b['N0_YLDF'].values).argmin(axis=1)
ix
Out[47]: array([4, 2, 6, 6, 0, 4, 7, 4])
然后做
df_a['N0_DWOC'] = df_b.ix[ix, 'N0_DWOC'].values
In [73]: df_a
Out[73]:
N0_YLDF N0_DWOC
0 11.79 4
1 7.86 4
2 5.78 3
3 5.35 3
4 6.32 4
5 11.79 4
6 6.89 3
7 10.74 4