我使用代码here作为示例,为神经网络编写了以下反向传播例程。我面临的问题让我感到困惑,并且已经将我的调试技巧发挥到了极限。
我面临的问题相当简单:随着神经网络的训练,它的权重被训练为零而没有准确的增益。
我试图多次修复它,验证:
一些信息:
我不知道从哪里开始。我已经确认我要检查的所有内容都运行正常,但仍然无效,所以我在这里问。以下是我用来反向传播的代码:
def backprop(train_set, wts, bias, eta):
learning_coef = eta / len(train_set[0])
for next_set in train_set:
# These record the sum of the cost gradients in the batch
sum_del_w = [np.zeros(w.shape) for w in wts]
sum_del_b = [np.zeros(b.shape) for b in bias]
for test, sol in next_set:
del_w = [np.zeros(wt.shape) for wt in wts]
del_b = [np.zeros(bt.shape) for bt in bias]
# These two helper functions take training set data and make them useful
next_input = conv_to_col(test)
outp = create_tgt_vec(sol)
# Feedforward step
pre_sig = []; post_sig = []
for w, b in zip(wts, bias):
next_input = np.dot(w, next_input) + b
pre_sig.append(next_input)
post_sig.append(sigmoid(next_input))
next_input = sigmoid(next_input)
# Backpropagation gradient
delta = cost_deriv(post_sig[-1], outp) * sigmoid_deriv(pre_sig[-1])
del_b[-1] = delta
del_w[-1] = np.dot(delta, post_sig[-2].transpose())
for i in range(2, len(wts)):
pre_sig_vec = pre_sig[-i]
sig_deriv = sigmoid_deriv(pre_sig_vec)
delta = np.dot(wts[-i+1].transpose(), delta) * sig_deriv
del_b[-i] = delta
del_w[-i] = np.dot(delta, post_sig[-i-1].transpose())
sum_del_w = [dw + sdw for dw, sdw in zip(del_w, sum_del_w)]
sum_del_b = [db + sdb for db, sdb in zip(del_b, sum_del_b)]
# Modify weights based on current batch
wts = [wt - learning_coef * dw for wt, dw in zip(wts, sum_del_w)]
bias = [bt - learning_coef * db for bt, db in zip(bias, sum_del_b)]
return wts, bias
根据Shep的建议,我检查了在训练形状[2, 1, 1]
的网络时总是输出1时发生了什么,实际上,网络在这种情况下正常训练。我在这一点上的最佳猜测是,渐变对于0调整过强而在1s上调弱,导致净减少,尽管每一步增加 - 但我不确定。