Pandas通过索引从HDF5获取特定行

时间:2015-05-27 13:21:19

标签: python pandas hdf5

我有一个已写入HDF5文件的pandas DataFrame。数据由Timestamps索引,如下所示:

list

我想要的是创建一个我可以传递pandas DatetimeIndex的函数,它将返回一个DataFrame,其中包含DatetimeIndex中每个Timestamp之前或之前的行。

我遇到的问题是,如果我要查找的行超过30行,则连接的read_hdf查询将无效 - 请参阅[pandas read_hdf with 'where' condition limitation?

我现在正在做的是这个,但必须有一个更好的解决方案:

In [5]: df
Out[5]:
                          Codes   Price  Size
Time
2015-04-27 01:31:08-04:00     T  111.75    23
2015-04-27 01:31:39-04:00     T  111.80    23
2015-04-27 01:31:39-04:00     T  113.00    35
2015-04-27 01:34:14-04:00     T  113.00    85
2015-04-27 01:55:15-04:00     T  113.50   203
...                         ...     ...   ...
2015-05-26 11:35:00-04:00    CA  110.55   196
2015-05-26 11:35:00-04:00    CA  110.55    98
2015-05-26 11:35:00-04:00    CA  110.55   738
2015-05-26 11:35:00-04:00    CA  110.55    19
2015-05-26 11:37:01-04:00        110.55    12

1 个答案:

答案 0 :(得分:3)

这是使用where mask

的示例
In [22]: pd.set_option('max_rows',10)

In [23]: df = DataFrame({'A' : np.random.randn(100), 'B' : pd.date_range('20130101',periods=100)}).set_index('B')

In [24]: df
Out[24]: 
                   A
B                   
2013-01-01  0.493144
2013-01-02  0.421045
2013-01-03 -0.717824
2013-01-04  0.159865
2013-01-05 -0.485890
...              ...
2013-04-06 -0.805954
2013-04-07 -1.014333
2013-04-08  0.846877
2013-04-09 -1.646908
2013-04-10 -0.160927

[100 rows x 1 columns]

存储测试框架

In [25]: store = pd.HDFStore('test.h5',mode='w')

In [26]: store.append('df',df)

创建随机选择的日期。

In [27]: dates = df.index.take(np.random.randint(0,100,10))

In [28]: dates
Out[28]: DatetimeIndex(['2013-03-29', '2013-02-16', '2013-01-15', '2013-02-06', '2013-01-12', '2013-02-24', '2013-02-18', '2013-01-06', '2013-03-17', '2013-03-21'], dtype='datetime64[ns]', name=u'B', freq=None, tz=None)

选择索引列(完整)

In [29]: c = store.select_column('df','index')

In [30]: c
Out[30]: 
0    2013-01-01
1    2013-01-02
2    2013-01-03
3    2013-01-04
4    2013-01-05
        ...    
95   2013-04-06
96   2013-04-07
97   2013-04-08
98   2013-04-09
99   2013-04-10
Name: B, dtype: datetime64[ns]

选择所需的索引器。这实际上可能有些复杂,例如您可能需要.reindex(method='nearest')

In [34]: c[c.isin(dates)] 
Out[34]: 
5    2013-01-06
11   2013-01-12
14   2013-01-15
36   2013-02-06
46   2013-02-16
48   2013-02-18
54   2013-02-24
75   2013-03-17
79   2013-03-21
87   2013-03-29
Name: B, dtype: datetime64[ns]

选择您想要的行

In [32]: store.select('df',where=c[c.isin(dates)].index)
Out[32]: 
                   A
B                   
2013-01-06  0.680930
2013-01-12  0.165923
2013-01-15 -0.517692
2013-02-06 -0.351020
2013-02-16  1.348973
2013-02-18  0.448890
2013-02-24 -1.078522
2013-03-17 -0.358597
2013-03-21 -0.482301
2013-03-29  0.343381

In [33]: store.close()