间隔由开始和结束定义。
给定一系列可能重叠的区间[比如,0-999], 构建数据结构以支持最佳的以下范围查询 时间复杂度
重叠(开始,结束) =与[start,end]重叠的所有区间的集合
内(开始,结束) = [开始,结束]内所有区间的集合
其中,
Intervals I1[start1, end1], I2[start2, end2] are said to overlap with each other iff start1<end2 && start2<end1
Interval I1[start1, end1] is said to be within interval I2[start2,end2] iff start1>start2 && end1<end2
答案 0 :(得分:0)
此问题所涉及的数据结构称为Interval tree:
一个有序的树数据结构来保存间隔,它允许一个 有效地找到与任何给定间隔重叠的所有间隔或 点。
两种有效的方法:
用于搜索所有重叠区间的链接中提出的算法预计比传统的区间树(扩充树)更快,用于搜索操作,添加元素的速度要慢一些。
实现间隔树的各种方法:
实施解决方案时,您应该知道performance of java collections processing
答案 1 :(得分:0)
写了一些Scala代码来使用区间树来实现它!
class IntervalSearchTree {
var root=new IntervalNode(null,null,null,null,null);
class IntervalNode(var left:IntervalNode,var start:Integer,var end:Integer,var maxEnd:Integer,var right:IntervalNode);
def add(start:Integer,end:Integer ):Unit={
var node:IntervalNode=root
while(node!=null){
if(end>node.maxEnd)
node.maxEnd=end
if (start < node.start) {
if (node.left == null) {
node.left = new IntervalNode(null, start, end, end, null);
return;
}
node = node.left;
} else {
if (node.right == null) {
node.right = new IntervalNode(null, start, end, end, null);
return;
}
node = node.right;
}
}
root = new IntervalNode(null, start, end, end, null);
}
def overlap(start:Integer,end:Integer):Unit={
var intervalNode:IntervalNode=root;
while (intervalNode != null) {
if (intersection(start, end, intervalNode)){
println(intervalNode.start+"-"+intervalNode.end)
}
if (leftSubTree(start, end, intervalNode.left)) {
intervalNode = intervalNode.left;
} else {
intervalNode = intervalNode.right;
}
}
}
def within(start:Integer,end:Integer):Unit={
var intervalNode:IntervalNode = root;
while (intervalNode != null) {
if (subset(start, end, intervalNode)){
println(intervalNode.start+"-"+intervalNode.end)
}
if (leftSubTree(start, end, intervalNode.left)) {
intervalNode = intervalNode.left;
} else {
intervalNode = intervalNode.right;
}
}
}
def subset(start:Integer,end:Integer,intervalNode:IntervalNode):Boolean={
return start<intervalNode.start && end >intervalNode.end ;
}
def intersection(start:Integer,end:Integer,intervalNode:IntervalNode):Boolean={
return start < intervalNode.end && end > intervalNode.start;
}
def leftSubTree(start:Integer,end:Integer,intervalLeftSubtree:IntervalNode):Boolean={
return intervalLeftSubtree != null && intervalLeftSubtree.maxEnd > start;
}
def main(args: Array[String]): Unit = {
var intervalSearchTree=new IntervalSearchTree()
intervalSearchTree.add(17, 19);
intervalSearchTree.add(5, 8);
intervalSearchTree.add(21, 24);
intervalSearchTree.add(22, 24);
intervalSearchTree.add(20, 26);
intervalSearchTree.add(20, 24);
intervalSearchTree.add(4, 8);
intervalSearchTree.add(5, 9);
intervalSearchTree.add(15, 18);
intervalSearchTree.add(7, 10);
intervalSearchTree.add(16, 22);
//Input for testing overlaps
println("Overlaps");
intervalSearchTree.overlap(23, 25);
//Input for testing overlaps
println("Within");
intervalSearchTree.within(4, 25);
}
}