我正在使用fftw3库在c中编写复杂到复杂DFT的简单代码。 我已经写了一个带有输入数组双数据的文件,所以我可以与matlab fft函数进行比较。 我尝试从变换数组执行逆变换,但结果和第一个输入数组是不同的。这是我的结果:
FFTW3 TRANSFORM WELCOME <<<<<
enter the number (integer) N of samples (Bit: 64) (preferably power of 2):8
SAMPLE INPUT
in[0][0] = -216448918.015237 in[0][1] = 0.000000
in[1][0] = 948904790.062151 in[1][1] = 0.000000
in[2][0] = 826811206.185300 in[2][1] = 0.000000
in[3][0] = 1868763250.342451 in[3][1] = 0.000000
in[4][0] = 703135606.077152 in[4][1] = 0.000000
in[5][0] = -1989016445.622210 in[5][1] = 0.000000
in[6][0] = 1912963650.704585 in[6][1] = 0.000000
in[7][0] = 811527262.805480 in[7][1] = 0.000000
Hit enter to continue ...
FORWARD TRANSFORM COEFFICIENTS
out[0][0] = 4866640402.539672 out[0][1] = 0.000000
out[1][0] = 410260768.150135 out[1][1] = -1738850319.926936
out[2][0] = -2253088168.827970 out[2][1] = 3720402168.707990
out[3][0] = -2249429816.334913 out[3][1] = -3911155208.965507
out[4][0] = 1586282687.363928 out[4][1] = 0.000000
out[5][0] = -2249429816.334913 out[5][1] = 3911155208.965507
out[6][0] = -2253088168.827970 out[6][1] = -3720402168.707990
out[7][0] = 410260768.150135 out[7][1] = 1738850319.926936
do you want to calculate the inverse-transform? (y/n)
y
INVERSE TRANSFORM COEFFICIENTS
rev[0][0] = -1731591344.121896 rev[0][1] = 0.000000
rev[1][0] = 7591238320.497208 rev[1][1] = 0.000000
rev[2][0] = 6614489649.482399 rev[2][1] = 0.000000
rev[3][0] = 14950106002.739609 rev[3][1] = 0.000000
rev[4][0] = 5625084848.617215 rev[4][1] = 0.000000
rev[5][0] = -15912131564.977680 rev[5][1] = 0.000000
rev[6][0] = 15303709205.636681 rev[6][1] = 0.000000
rev[7][0] = 6492218102.443840 rev[7][1] = 0.000000
正如您所见'in'和'rev'数组不同但直接转换是正确的。我把它与matlab进行了比较,结果是一样的。 当我用matlab执行逆变换时,我获得了输入数组。 我该怎么办?
这是我的c代码:
#include <fftw3.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define PI 3.141592653589
int main()
{
fftw_complex *in, *out, *rev;
int i,f0,A,N;
char no;
FILE *fp;
fftw_plan p;
printf("\n\n>>>>> FFTW3 TRANSFORM WELCOME <<<<<");
printf("\n\n enter the number (integer) N of samples (bit: %ld) (preferably power of 2):",(sizeof(fftw_complex)/2)*8);
scanf("%d",&N);
//f0 = 50;
//A = 1;
//allocating memory for input & output arrays
in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*N);
out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*N);
rev = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*N);
//Opening the data file
if((fp=fopen("lista_numeri_double.dat","rb"))==NULL)
{
printf("\nError reading file\n");
exit(1);
}
printf("\nSAMPLE INPUT");
//assigning samples read from the file
for(i=0;i<N;i++)
{
//in[i][0] = A * cos(2*PI*f0*i/N);
fread(&in[i][0],sizeof(double),1,fp);
in[i][1]=0;
printf("\nin[%d][0] = %f \t\tin[%d][1] = %f",i,in[i][0],i,in[i][1]);
}
//plan and execute transform
p = fftw_plan_dft_1d(N,in,out,FFTW_FORWARD,FFTW_ESTIMATE);
fftw_execute(p);
printf("\n\n Hit enter to continue ... \n");
scanf("%c",&no);
//print output values
printf("\n\nFORWARD TRANSFORM COEFFICIENTS\n");
for(i=0;i<N;i++)
{
printf("\nout[%d][0] = %f \t\tout[%d][1] = %f",i,out[i][0],i,out[i][1]);
}
fftw_destroy_plan(p);
printf("\n do you want to calculate the inverse-transform? (y/n) \n");
scanf ("%c",&no);
if(no=='y')
{
//plan and execute inverse transform
p = fftw_plan_dft_1d(N,out,rev,FFTW_BACKWARD,FFTW_ESTIMATE);
fftw_execute(p);
printf("\n\nINVERSE TRANSFORM COEFFICIENTS\n");
for(i=0;i<N;i++)
{
printf("rev[%d][0] = %f \t\trev[%d][1] = %f\n",i,rev[i][0],i,rev[i][1]);
}
fftw_destroy_plan(p);
}
return 0;
}
答案 0 :(得分:4)
Matlab和FFTW之间的差异伴随着应用于变换的缩放因子。
尽管Matlab's FFT被归一化,但FFTW所使用的算法in FFTW's documentation未被规范化。换句话说,使用FFTW的全圆变换(向前跟随向后)将结果缩放一个因子N
。
相应地,比较in
和rev
数组会显示rev
按一致因子8(您的示例中使用的转换的大小N
)进行缩放。