尝试验证输入时会生成以下错误:
org.owasp.esapi.errors.ConfigurationException: java.lang.reflect.InvocationTargetException SecurityConfiguration class (org.owasp.esapi.reference.DefaultSecurityConfiguration) CTOR threw exception.
at org.owasp.esapi.util.ObjFactory.make(ObjFactory.java:129)
at org.owasp.esapi.ESAPI.securityConfiguration(ESAPI.java:184)
at org.owasp.esapi.ESAPI.validator(ESAPI.java:191)
at crypton.RSACripto.main(RSACripto.java:160)
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:592)
at org.owasp.esapi.util.ObjFactory.make(ObjFactory.java:86)
... 3 more
Caused by: org.owasp.esapi.errors.ConfigurationException: ESAPI.properties could not be loaded by any means. Fail.
at org.owasp.esapi.reference.DefaultSecurityConfiguration.loadConfiguration(DefaultSecurityConfiguration.java:439)
at org.owasp.esapi.reference.DefaultSecurityConfiguration.<init>(DefaultSecurityConfiguration.java:227)
at org.owasp.esapi.reference.DefaultSecurityConfiguration.getInstance(DefaultSecurityConfiguration.java:75)
... 8 more
Caused by: java.lang.IllegalArgumentException: Failed to load ESAPI.properties as a classloader resource.
at org.owasp.esapi.reference.DefaultSecurityConfiguration.loadConfigurationFromClasspath(DefaultSecurityConfiguration.java:653)
at org.owasp.esapi.reference.DefaultSecurityConfiguration.loadConfiguration(DefaultSecurityConfiguration.java:436)
... 10 more
这发生在以下行:
String validInput=ESAPI.validator().getValidInput("GetValidInput:", "hola.txt", "Validator.FileName", 10,false);
我已在下面添加了ESAPI配置:
# ESAPI Configuration
#
# If true, then print all the ESAPI properties set here when they are loaded.
# If false, they are not printed. Useful to reduce output when running JUnit tests.
# If you need to troubleshoot a properties related problem, turning this on may help,
# but we leave it off for running JUnit tests. (It will be 'true' in the one delivered
# as part of production ESAPI, mostly for backward compatibility.)
ESAPI.printProperties=false
# ESAPI is designed to be easily extensible. You can use the reference implementation
# or implement your own providers to take advantage of your enterprise's security
# infrastructure. The functions in ESAPI are referenced using the ESAPI locator, like:
#
# String ciphertext =
# ESAPI.encryptor().encrypt("Secret message"); // Deprecated in 2.0
# CipherText cipherText =
# ESAPI.encryptor().encrypt(new PlainText("Secret message")); // Preferred
#
# Below you can specify the classname for the provider that you wish to use in your
# application. The only requirement is that it implement the appropriate ESAPI interface.
# This allows you to switch security implementations in the future without rewriting the
# entire application.
#
# ExperimentalAccessController requires ESAPI-AccessControlPolicy.xml in .esapi directory
ESAPI.AccessControl=org.owasp.esapi.reference.DefaultAccessController
# FileBasedAuthenticator requires users.txt file in .esapi directory
ESAPI.Authenticator=org.owasp.esapi.reference.FileBasedAuthenticator
ESAPI.Encoder=org.owasp.esapi.reference.DefaultEncoder
ESAPI.Encryptor=org.owasp.esapi.reference.crypto.JavaEncryptor
ESAPI.Executor=org.owasp.esapi.reference.DefaultExecutor
ESAPI.HTTPUtilities=org.owasp.esapi.reference.DefaultHTTPUtilities
ESAPI.IntrusionDetector=org.owasp.esapi.reference.DefaultIntrusionDetector
# Log4JFactory Requires log4j.xml or log4j.properties in classpath - http://www.laliluna.de/log4j-tutorial.html
ESAPI.Logger=org.owasp.esapi.reference.Log4JLogFactory
#ESAPI.Logger=org.owasp.esapi.reference.JavaLogFactory
#ESAPI.Logger=org.owasp.esapi.reference.ExampleExtendedLog4JLogFactory
ESAPI.Randomizer=org.owasp.esapi.reference.DefaultRandomizer
ESAPI.Validator=org.owasp.esapi.reference.DefaultValidator
#===========================================================================
# ESAPI Authenticator
#
Authenticator.AllowedLoginAttempts=3
Authenticator.MaxOldPasswordHashes=13
Authenticator.UsernameParameterName=username
Authenticator.PasswordParameterName=password
# RememberTokenDuration (in days)
Authenticator.RememberTokenDuration=14
# Session Timeouts (in minutes)
Authenticator.IdleTimeoutDuration=20
Authenticator.AbsoluteTimeoutDuration=120
#===========================================================================
# ESAPI Encoder
#
# ESAPI canonicalizes input before validation to prevent bypassing filters with encoded attacks.
# Failure to canonicalize input is a very common mistake when implementing validation schemes.
# Canonicalization is automatic when using the ESAPI Validator, but you can also use the
# following code to canonicalize data.
#
# ESAPI.Encoder().canonicalize( "%22hello world"" );
#
# Multiple encoding is when a single encoding format is applied multiple times. Allowing
# multiple encoding is strongly discouraged.
Encoder.AllowMultipleEncoding=false
# Mixed encoding is when multiple different encoding formats are applied, or when
# multiple formats are nested. Allowing multiple encoding is strongly discouraged.
Encoder.AllowMixedEncoding=false
# The default list of codecs to apply when canonicalizing untrusted data. The list should include the codecs
# for all downstream interpreters or decoders. For example, if the data is likely to end up in a URL, HTML, or
# inside JavaScript, then the list of codecs below is appropriate. The order of the list is not terribly important.
Encoder.DefaultCodecList=HTMLEntityCodec,PercentCodec,JavaScriptCodec
#===========================================================================
# ESAPI Encryption
#
# The ESAPI Encryptor provides basic cryptographic functions with a simplified API.
# To get started, generate a new key using java -classpath esapi.jar org.owasp.esapi.reference.crypto.JavaEncryptor
# There is not currently any support for key rotation, so be careful when changing your key and salt as it
# will invalidate all signed, encrypted, and hashed data.
#
# WARNING: Not all combinations of algorithms and key lengths are supported.
# If you choose to use a key length greater than 128, you MUST download the
# unlimited strength policy files and install in the lib directory of your JRE/JDK.
# See http://java.sun.com/javase/downloads/index.jsp for more information.
#
# Backward compatibility with ESAPI Java 1.4 is supported by the two deprecated API
# methods, Encryptor.encrypt(String) and Encryptor.decrypt(String). However, whenever
# possible, these methods should be avoided as they use ECB cipher mode, which in almost
# all circumstances a poor choice because of it's weakness. CBC cipher mode is the default
# for the new Encryptor encrypt / decrypt methods for ESAPI Java 2.0. In general, you
# should only use this compatibility setting if you have persistent data encrypted with
# version 1.4 and even then, you should ONLY set this compatibility mode UNTIL
# you have decrypted all of your old encrypted data and then re-encrypted it with
# ESAPI 2.0 using CBC mode. If you have some reason to mix the deprecated 1.4 mode
# with the new 2.0 methods, make sure that you use the same cipher algorithm for both
# (256-bit AES was the default for 1.4; 128-bit is the default for 2.0; see below for
# more details.) Otherwise, you will have to use the new 2.0 encrypt / decrypt methods
# where you can specify a SecretKey. (Note that if you are using the 256-bit AES,
# that requires downloading the special jurisdiction policy files mentioned above.)
#
# ***** IMPORTANT: These are for JUnit testing. Test files may have been
# encrypted using these values so do not change these or
# those tests will fail. The version under
# src/main/resources/.esapi/ESAPI.properties
# will be delivered with Encryptor.MasterKey and
# Encryptor.MasterSalt set to the empty string.
#
# FINAL NOTE:
# If Maven changes these when run, that needs to be fixed.
# 256-bit key... requires unlimited strength jurisdiction policy files
### Encryptor.MasterKey=pJhlri8JbuFYDgkqtHmm9s0Ziug2PE7ovZDyEPm4j14=
# 128-bit key
Encryptor.MasterKey=a6H9is3hEVGKB4Jut+lOVA==
Encryptor.MasterSalt=SbftnvmEWD5ZHHP+pX3fqugNysc=
# Encryptor.MasterSalt=
# Provides the default JCE provider that ESAPI will "prefer" for its symmetric
# encryption and hashing. (That is it will look to this provider first, but it
# will defer to other providers if the requested algorithm is not implemented
# by this provider.) If left unset, ESAPI will just use your Java VM's current
# preferred JCE provider, which is generally set in the file
# "$JAVA_HOME/jre/lib/security/java.security".
#
# The main intent of this is to allow ESAPI symmetric encryption to be
# used with a FIPS 140-2 compliant crypto-module. For details, see the section
# "Using ESAPI Symmetric Encryption with FIPS 140-2 Cryptographic Modules" in
# the ESAPI 2.0 Symmetric Encryption User Guide, at:
# http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-symmetric-crypto-user-guide.html
# However, this property also allows you to easily use an alternate JCE provider
# such as "Bouncy Castle" without having to make changes to "java.security".
# See Javadoc for SecurityProviderLoader for further details. If you wish to use
# a provider that is not known to SecurityProviderLoader, you may specify the
# fully-qualified class name of the JCE provider class that implements
# java.security.Provider. If the name contains a '.', this is interpreted as
# a fully-qualified class name that implements java.security.Provider.
#
# NOTE: Setting this property has the side-effect of changing it in your application
# as well, so if you are using JCE in your application directly rather than
# through ESAPI (you wouldn't do that, would you? ;-), it will change the
# preferred JCE provider there as well.
#
# Default: Keeps the JCE provider set to whatever JVM sets it to.
Encryptor.PreferredJCEProvider=
# AES is the most widely used and strongest encryption algorithm. This
# should agree with your Encryptor.CipherTransformation property.
# By default, ESAPI Java 1.4 uses "PBEWithMD5AndDES" and which is
# very weak. It is essentially a password-based encryption key, hashed
# with MD5 around 1K times and then encrypted with the weak DES algorithm
# (56-bits) using ECB mode and an unspecified padding (it is
# JCE provider specific, but most likely "NoPadding"). However, 2.0 uses
# "AES/CBC/PKCSPadding". If you want to change these, change them here.
# Warning: This property does not control the default reference implementation for
# ESAPI 2.0 using JavaEncryptor. Also, this property will be dropped
# in the future.
# @deprecated
Encryptor.EncryptionAlgorithm=AES
# For ESAPI Java 2.0 - New encrypt / decrypt methods use this.
Encryptor.CipherTransformation=AES/CBC/PKCS5Padding
# Applies to ESAPI 2.0 and later only!
# Comma-separated list of cipher modes that provide *BOTH*
# confidentiality *AND* message authenticity. (NIST refers to such cipher
# modes as "combined modes" so that's what we shall call them.) If any of these
# cipher modes are used then no MAC is calculated and stored
# in the CipherText upon encryption. Likewise, if one of these
# cipher modes is used with decryption, no attempt will be made
# to validate the MAC contained in the CipherText object regardless
# of whether it contains one or not. Since the expectation is that
# these cipher modes support support message authenticity already,
# injecting a MAC in the CipherText object would be at best redundant.
#
# Note that as of JDK 1.5, the SunJCE provider does not support *any*
# of these cipher modes. Of these listed, only GCM and CCM are currently
# NIST approved. YMMV for other JCE providers. E.g., Bouncy Castle supports
# GCM and CCM with "NoPadding" mode, but not with "PKCS5Padding" or other
# padding modes.
Encryptor.cipher_modes.combined_modes=GCM,CCM,IAPM,EAX,OCB,CWC
# Applies to ESAPI 2.0 and later only!
# Additional cipher modes allowed for ESAPI 2.0 encryption. These
# cipher modes are in _addition_ to those specified by the property
# 'Encryptor.cipher_modes.combined_modes'.
# Note: We will add support for streaming modes like CFB & OFB once
# we add support for 'specified' to the property 'Encryptor.ChooseIVMethod'
# (probably in ESAPI 2.1).
#
# IMPORTANT NOTE: In the official ESAPI.properties we do *NOT* include ECB
# here as this is an extremely weak mode. However, we *must*
# allow it here so we can test ECB mode. That is important
# since the logic is somewhat different (i.e., ECB mode does
# not use an IV).
# DISCUSS: Better name?
# NOTE: ECB added only for testing purposes. Don't try this at home!
Encryptor.cipher_modes.additional_allowed=CBC,ECB
# 128-bit is almost always sufficient and appears to be more resistant to
# related key attacks than is 256-bit AES. Use '_' to use default key size
# for cipher algorithms (where it makes sense because the algorithm supports
# a variable key size). Key length must agree to what's provided as the
# cipher transformation, otherwise this will be ignored after logging a
# warning.
#
# NOTE: This is what applies BOTH ESAPI 1.4 and 2.0. See warning above about mixing!
Encryptor.EncryptionKeyLength=128
# Because 2.0 uses CBC mode by default, it requires an initialization vector (IV).
# (All cipher modes except ECB require an IV.) There are two choices: we can either
# use a fixed IV known to both parties or allow ESAPI to choose a random IV. While
# the IV does not need to be hidden from adversaries, it is important that the
# adversary not be allowed to choose it. Also, random IVs are generally much more
# secure than fixed IVs. (In fact, it is essential that feed-back cipher modes
# such as CFB and OFB use a different IV for each encryption with a given key so
# in such cases, random IVs are much preferred. By default, ESAPI 2.0 uses random
# IVs. If you wish to use 'fixed' IVs, set 'Encryptor.ChooseIVMethod=fixed' and
# uncomment the Encryptor.fixedIV.
#
# Valid values: random|fixed|specified 'specified' not yet implemented; planned for 2.1
Encryptor.ChooseIVMethod=random
# If you choose to use a fixed IV, then you must place a fixed IV here that
# is known to all others who are sharing your secret key. The format should
# be a hex string that is the same length as the cipher block size for the
# cipher algorithm that you are using. The following is an example for AES
# from an AES test vector for AES-128/CBC as described in:
# NIST Special Publication 800-38A (2001 Edition)
# "Recommendation for Block Cipher Modes of Operation".
# (Note that the block size for AES is 16 bytes == 128 bits.)
#
Encryptor.fixedIV=0x000102030405060708090a0b0c0d0e0f
# Whether or not CipherText should use a message authentication code (MAC) with it.
# This prevents an adversary from altering the IV as well as allowing a more
# fool-proof way of determining the decryption failed because of an incorrect
# key being supplied. This refers to the "separate" MAC calculated and stored
# in CipherText, not part of any MAC that is calculated as a result of a
# "combined mode" cipher mode.
#
# If you are using ESAPI with a FIPS 140-2 cryptographic module, you *must* also
# set this property to false.
Encryptor.CipherText.useMAC=true
# Whether or not the PlainText object may be overwritten and then marked
# eligible for garbage collection. If not set, this is still treated as 'true'.
Encryptor.PlainText.overwrite=true
# Do not use DES except in a legacy situations. 56-bit is way too small key size.
#Encryptor.EncryptionKeyLength=56
#Encryptor.EncryptionAlgorithm=DES
# TripleDES is considered strong enough for most purposes.
# Note: There is also a 112-bit version of DESede. Using the 168-bit version
# requires downloading the special jurisdiction policy from Sun.
#Encryptor.EncryptionKeyLength=168
#Encryptor.EncryptionAlgorithm=DESede
Encryptor.HashAlgorithm=SHA-512
Encryptor.HashIterations=1024
Encryptor.DigitalSignatureAlgorithm=SHA1withDSA
Encryptor.DigitalSignatureKeyLength=1024
Encryptor.RandomAlgorithm=SHA1PRNG
Encryptor.CharacterEncoding=UTF-8
# Currently supported choices for JDK 1.5 and 1.6 are:
# HmacSHA1 (160 bits), HmacSHA256 (256 bits), HmacSHA384 (384 bits), and
# HmacSHA512 (512 bits).
# Note that HmacMD5 is *not* supported for the PRF used by the KDF even though
# these JDKs support it.
Encryptor.KDF.PRF=HmacSHA256
#===========================================================================
# ESAPI HttpUtilties
#
# The HttpUtilities provide basic protections to HTTP requests and responses. Primarily these methods
# protect against malicious data from attackers, such as unprintable characters, escaped characters,
# and other simple attacks. The HttpUtilities also provides utility methods for dealing with cookies,
# headers, and CSRF tokens.
#
# Default file upload location (remember to escape backslashes with \\)
HttpUtilities.UploadDir=C\:\\ESAPI\\testUpload
# let this default to java.io.tmpdir for testing
#HttpUtilities.UploadTempDir=C:\\temp
# Force flags on cookies, if you use HttpUtilities to set cookies
HttpUtilities.ForceHttpOnlySession=false
HttpUtilities.ForceSecureSession=false
HttpUtilities.ForceHttpOnlyCookies=true
HttpUtilities.ForceSecureCookies=true
# Maximum size of HTTP headers
HttpUtilities.MaxHeaderSize=4096
# File upload configuration
HttpUtilities.ApprovedUploadExtensions=.zip,.pdf,.doc,.docx,.ppt,.pptx,.tar,.gz,.tgz,.rar,.war,.jar,.ear,.xls,.rtf,.properties,.java,.class,.txt,.xml,.jsp,.jsf,.exe,.dll
HttpUtilities.MaxUploadFileBytes=500000000
# Using UTF-8 throughout your stack is highly recommended. That includes your database driver,
# container, and any other technologies you may be using. Failure to do this may expose you
# to Unicode transcoding injection attacks. Use of UTF-8 does not hinder internationalization.
HttpUtilities.ResponseContentType=text/html; charset=UTF-8
# This is the name of the cookie used to represent the HTTP session
# Typically this will be the default "JSESSIONID"
HttpUtilities.HttpSessionIdName=JSESSIONID
#===========================================================================
# ESAPI Executor
# CHECKME - Not sure what this is used for, but surely it should be made OS independent.
Executor.WorkingDirectory=C\:\\Windows\\Temp
Executor.ApprovedExecutables=C\:\\Windows\\System32\\cmd.exe,C\:\\Windows\\System32\\runas.exe
#===========================================================================
# ESAPI Logging
# Set the application name if these logs are combined with other applications
Logger.ApplicationName=ExampleApplication
# If you use an HTML log viewer that does not properly HTML escape log data, you can set LogEncodingRequired to true
Logger.LogEncodingRequired=false
# Determines whether ESAPI should log the application name. This might be clutter in some single-server/single-app environments.
Logger.LogApplicationName=true
# Determines whether ESAPI should log the server IP and port. This might be clutter in some single-server environments.
Logger.LogServerIP=true
# LogFileName, the name of the logging file. Provide a full directory path (e.g., C:\\ESAPI\\ESAPI_logging_file) if you
# want to place it in a specific directory.
Logger.LogFileName=ESAPI_logging_file
# MaxLogFileSize, the max size (in bytes) of a single log file before it cuts over to a new one (default is 10,000,000)
Logger.MaxLogFileSize=10000000
#===========================================================================
# ESAPI Intrusion Detection
#
# Each event has a base to which .count, .interval, and .action are added
# The IntrusionException will fire if we receive "count" events within "interval" seconds
# The IntrusionDetector is configurable to take the following actions: log, logout, and disable
# (multiple actions separated by commas are allowed e.g. event.test.actions=log,disable
#
# Custom Events
# Names must start with "event." as the base
# Use IntrusionDetector.addEvent( "test" ) in your code to trigger "event.test" here
# You can also disable intrusion detection completely by changing
# the following parameter to true
#
IntrusionDetector.Disable=false
#
IntrusionDetector.event.test.count=2
IntrusionDetector.event.test.interval=10
IntrusionDetector.event.test.actions=disable,log
# Exception Events
# All EnterpriseSecurityExceptions are registered automatically
# Call IntrusionDetector.getInstance().addException(e) for Exceptions that do not extend EnterpriseSecurityException
# Use the fully qualified classname of the exception as the base
# any intrusion is an attack
IntrusionDetector.org.owasp.esapi.errors.IntrusionException.count=1
IntrusionDetector.org.owasp.esapi.errors.IntrusionException.interval=1 IntrusionDetector.org.owasp.esapi.errors.IntrusionException.actions=log,disable,logout
# for test purposes
# CHECKME: Shouldn't there be something in the property name itself that designates
# that these are for testing???
IntrusionDetector.org.owasp.esapi.errors.IntegrityException.count=10
IntrusionDetector.org.owasp.esapi.errors.IntegrityException.interval=5
IntrusionDetector.org.owasp.esapi.errors.IntegrityException.actions=log,disable,logout
# rapid validation errors indicate scans or attacks in progress
# org.owasp.esapi.errors.ValidationException.count=10
# org.owasp.esapi.errors.ValidationException.interval=10
# org.owasp.esapi.errors.ValidationException.actions=log,logout
# sessions jumping between hosts indicates session hijacking
IntrusionDetector.org.owasp.esapi.errors.AuthenticationHostException.count=2
IntrusionDetector.org.owasp.esapi.errors.AuthenticationHostException.interval=10
IntrusionDetector.org.owasp.esapi.errors.AuthenticationHostException.actions=log,logout
#===========================================================================
# ESAPI Validation
#
# The ESAPI Validator works on regular expressions with defined names. You can define names
# either here, or you may define application specific patterns in a separate file defined below.
# This allows enterprises to specify both organizational standards as well as application specific
# validation rules.
#
Validator.ConfigurationFile=validation.properties
# Validators used by ESAPI
Validator.AccountName=^[a-zA-Z0-9]{3,20}$
Validator.SystemCommand=^[a-zA-Z\\-\\/]{1,64}$
Validator.RoleName=^[a-z]{1,20}$
Validator.Redirect=^(/[a-zA-Z0-9.\\-_]*)*?[a-zA-Z0-9.\\-_\=&]*$
# Global HTTP Validation Rules
# Values with Base64 encoded data (e.g. encrypted state) will need at least [a-zA-Z0-9\/+=]
Validator.HTTPScheme=^(http|https)$
Validator.HTTPServerName=^[a-zA-Z0-9_.\\-]*$
Validator.HTTPCookieName=^[a-zA-Z0-9\\-_]{1,32}$
Validator.HTTPCookieValue=^[a-zA-Z0-9\\-\\/+\=_ ]*$
Validator.HTTPHeaderName=^[a-zA-Z0-9\\-_]{1,32}$
Validator.HTTPHeaderValue=^[a-zA-Z0-9()\\-\=\\*\\.\\?;,+\\/\:&_ ]*$
Validator.HTTPServletPath=^[a-zA-Z0-9.\\-\\/_]*$
Validator.HTTPPath=^[a-zA-Z0-9.\\-_]*$
Validator.HTTPURL=^.*$
Validator.HTTPJSESSIONID=^[A-Z0-9]{10,30}$
# Contributed by Fraenku@gmx.ch
# Googlecode Issue 116 (http://code.google.com/p/owasp-esapi-java/issues/detail?id=116)
Validator.HTTPParameterName=^[a-zA-Z0-9_\\-]{1,32}$
Validator.HTTPParameterValue=^[\\p{L}\\p{N}.\\-/+\=_ \!$*?@]{0,1000}$
Validator.HTTPContextPath=^/[a-zA-Z0-9.\\-_]*$
Validator.HTTPQueryString=^([a-zA-Z0-9_\\-]{1,32}\=[\\p{L}\\p{N}.\\-/+\=_\!$*?@%]*&?)*$
Validator.HTTPURI=^(/[a-zA-Z0-9.\\-_]*)*?[a-zA-Z0-9.\\-_\=&]*$
# Validation of file related input
Validator.FileName=^[a-zA-Z0-9(.|\\|/|-|' ')]*[a-zA-Z0-9]+$
Validator.DirectoryName=^[a-zA-Z0-9\:/\\\\\!@\#$%^&{}\\[\\]()_+\\-\=,.~'`]{1,255}$
# Validation of dates. Controls whether or not 'lenient' dates are accepted.
# See DataFormat.setLenient(boolean flag) for further details.
Validator.AcceptLenientDates=false
我的研究似乎表明它与ESAPI属性文件有关,但是我将属性文件放在与jar相同的文件夹中,但它不起作用。
有人能帮帮我吗?
答案 0 :(得分:1)
解决了,我只需要在我的classpath项目中添加具有属性文件并且刚刚工作的文件夹,现在我有一个不同的错误,但那很好
答案 1 :(得分:1)
您可以在您的网络应用程序根源文件夹(src)中将其删除。不要把它放在任何包装中。对我来说,空文件已经解决了。虽然它也在其他地方搜索过。您可以参考以下日志 -
Attempting to load ESAPI.properties via file I/O.
Attempting to load ESAPI.properties as resource file via file I/O.
Not found in 'org.owasp.esapi.resources' directory or file not readable: /Applications/Eclipse.app/Contents/MacOS/ESAPI.properties
Not found in SystemResource Directory/resourceDirectory: .esapi/ESAPI.properties
Not found in 'user.home' (/Users/athakur) directory: /Users/athakur/esapi/ESAPI.properties
Loading ESAPI.properties via file I/O failed. Exception was: java.io.FileNotFoundException
Attempting to load ESAPI.properties via the classpath.
SUCCESSFULLY LOADED ESAPI.properties via the CLASSPATH from '/ (root)' using current thread context class loader!
SecurityConfiguration for Validator.ConfigurationFile not found in ESAPI.properties. Using default: validation.properties
Attempting to load validation.properties via file I/O.
Attempting to load validation.properties as resource file via file I/O.
Not found in 'org.owasp.esapi.resources' directory or file not readable: /Applications/Eclipse.app/Contents/MacOS/validation.properties
Not found in SystemResource Directory/resourceDirectory: .esapi/validation.properties
Not found in 'user.home' (/Users/athakur) directory: /Users/athakur/esapi/validation.properties
Loading validation.properties via file I/O failed.
Attempting to load validation.properties via the classpath.
validation.properties could not be loaded by any means. fail. Exception was: java.lang.IllegalArgumentException: Failed to load ESAPI.properties as a classloader resource.
SecurityConfiguration for ESAPI.printProperties not found in ESAPI.properties. Using default: false
SecurityConfiguration for Encryptor.CipherTransformation not found in ESAPI.properties. Using default: AES/CBC/PKCS5Padding
SecurityConfiguration for ESAPI.Encoder not found in ESAPI.properties. Using default: org.owasp.esapi.reference.DefaultEncoder
SecurityConfiguration for ESAPI.Logger not found in ESAPI.properties. Using default: org.owasp.esapi.reference.JavaLogFactory
SecurityConfiguration for Logger.LogApplicationName not found in ESAPI.properties. Using default: true
SecurityConfiguration for Logger.LogServerIP not found in ESAPI.properties. Using default: true
SecurityConfiguration for Logger.ApplicationName not found in ESAPI.properties. Using default: DefaultName
基于以上日志,我在源文件夹的根目录中创建了一个空的ESAPI.properties文件,并在其中添加了以下内容 -
ESAPI.printProperties=true
Encryptor.CipherTransformation=AES/CBC/PKCS5Padding
ESAPI.Encoder=org.owasp.esapi.reference.DefaultEncoder
# Log4JFactory Requires log4j.xml or log4j.properties in classpath - http://www.laliluna.de/log4j-tutorial.html
ESAPI.Logger=org.owasp.esapi.reference.Log4JLogFactory
# Determines whether ESAPI should log the application name. This might be clutter in some single-server/single-app environments.
Logger.LogApplicationName=true
# Determines whether ESAPI should log the server IP and port. This might be clutter in some single-server environments.
Logger.LogServerIP=true
# Set the application name if these logs are combined with other applications
Logger.ApplicationName=ExampleApplication