假设我像这样构建一个numpy记录数组
num_rows = <whatever>
data = np.zeros(
(num_rows,),
dtype={
'names':['apple', 'banana'],
'formats': ['f8', 'f8']
}
现在我可以通过名称或索引访问数据。 例如,以下内容相同:
data['banana'][0]
和
data[0]['banana']
等。
有没有办法别名不同的名字?
例如,我可以进行设置,以便有另一个名称manzana
,以便
data['manzana']
与
相同data['apple']
答案 0 :(得分:3)
['offsets'和'titles'是为字段指定不同名称的两种机制]
有一个offset
参数可以通过这种方式运行。通常它用于将另一个字段分成几个部分(例如,int到字节)。但它也适用于相同的领域。实际上,它定义了几个具有重叠数据的字段。
In [743]: dt=np.dtype({'names':['apple','manzana','banana','guineo'],
'formats':['f8','f8','f8','f8'],
'offsets':[0,0,8,8]})
In [745]: np.zeros((3,),dtype=dt)
Out[745]:
array([(0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0)],
dtype={'names':['apple','manzana','banana','guineo'],
'formats':['<f8','<f8','<f8','<f8'],
'offsets':[0,0,8,8], 'itemsize':16})
In [746]: A=np.zeros((3,),dtype=dt)
In [747]: A['banana']=[1,2,3]
In [748]: A
Out[748]:
array([(0.0, 0.0, 1.0, 1.0),
(0.0, 0.0, 2.0, 2.0),
(0.0, 0.0, 3.0, 3.0)],
dtype={'names':['apple','manzana','banana','guineo'], 'formats':['<f8','<f8','<f8','<f8'], 'offsets':[0,0,8,8], 'itemsize':16})
In [749]: A['guineo']
Out[749]: array([ 1., 2., 3.])
In [750]: A['manzana']=[.1,.2,.3]
In [751]: A['apple']
Out[751]: array([ 0.1, 0.2, 0.3])
In [752]: A
Out[752]:
array([(0.1, 0.1, 1.0, 1.0),
(0.2, 0.2, 2.0, 2.0),
(0.3, 0.3, 3.0, 3.0)],
dtype={'names':['apple','manzana','banana','guineo'], 'formats':['<f8','<f8','<f8','<f8'], 'offsets':[0,0,8,8], 'itemsize':16})
还有另一个dtype参数titles
更适合您的需求,并且更容易理解:
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
In [792]: dt1=np.dtype({'names':['apple','banana'],'formats':['f8','f8'], 'titles':['manzana', 'guineo'], 'offsets':[0,8]})
In [793]: A1=np.zeros((3,),dtype=dt1)
In [794]: A1
Out[794]:
array([(0.0, 0.0), (0.0, 0.0), (0.0, 0.0)],
dtype=[(('manzana', 'apple'), '<f8'), (('guineo', 'banana'), '<f8')])
In [795]: A1['apple']=[1,2,3]
In [796]: A1['guineo']=[.1,.2,.3]
In [797]: A1
Out[797]:
array([(1.0, 0.1), (2.0, 0.2), (3.0, 0.3)],
dtype=[(('manzana', 'apple'), '<f8'), (('guineo', 'banana'), '<f8')])
In [798]: A1['banana']
Out[798]: array([ 0.1, 0.2, 0.3])
答案 1 :(得分:0)
我已将@hpaulj的答案放入一个简单的方法并在此处分享,以防有人想要使用它。
def add_alias(arr, original, alias):
"""
Adds an alias to the field with the name original to the array arr.
Only one alias per field is allowed.
"""
if arr.dtype.names is None:
raise TypeError("arr must be a structured array. Use add_name instead.")
descr = arr.dtype.descr
try:
index = arr.dtype.names.index(original)
except ValueError:
raise ValueError("arr does not have a field named '" + str(original)
+ "'")
if type(descr[index][0]) is tuple:
raise ValueError("The field " + str(original) +
" already has an alias.")
descr[index] = ((alias, descr[index][0]), descr[index][1])
arr.dtype = np.dtype(descr)
return arr
def add_name(arr, name):
"""
Adds a name to the data of an unstructured array.
"""
if arr.dtype.names is not None:
raise TypeError("arr must not be a structured array. "
+ "Use add_alias instead.")
arr.dtype = np.dtype([(name, arr.dtype.name)])
return arr