我想将我的数据分成10个间隔,对应于10%的位移间隔。对于这10%间隔中的每一个,我希望能够计算平均力。我需要这些平均值,所以我可以构建一个如下图所示的数字。我要创建的图形除了在y轴上使用力而不是速度(我只需要帮助创建间隔 - 该图只是为了说明计算的目的):
例如,我想从0%-10%的位移计算平均力。
min(lift_S1_Intns50_chainno$Dis)
# [1] 0.02979588
TO
((min(lift_S1_Intns50_chainno$Dis))+(((max(lift_S1_Intns50_chainno$Dis)-min(lift_S1_Intns50_chainno$Dis))/10)*1))
# [1] 0.08614471
我的数据(前100个) - 只是为了了解数据:
structure(list(Time = c(10.143, 10.14333333, 10.14366667, 10.144,
10.14433333, 10.14466667, 10.145, 10.14533333, 10.14566667, 10.146,
10.14633333, 10.14666667, 10.147, 10.14733333, 10.14766667, 10.148,
10.14833333, 10.14866667, 10.149, 10.14933333, 10.14966667, 10.15,
10.15033333, 10.15066667, 10.151, 10.15133333, 10.15166667, 10.152,
10.15233333, 10.15266667, 10.153, 10.15333333, 10.15366667, 10.154,
10.15433333, 10.15466667, 10.155, 10.15533333, 10.15566667, 10.156,
10.15633333, 10.15666667, 10.157, 10.15733333, 10.15766667, 10.158,
10.15833333, 10.15866667, 10.159, 10.15933333, 10.15966667, 10.16,
10.16033333, 10.16066667, 10.161, 10.16133333, 10.16166667, 10.162,
10.16233333, 10.16266667, 10.163, 10.16333333, 10.16366667, 10.164,
10.16433333, 10.16466667, 10.165, 10.16533333, 10.16566667, 10.166,
10.16633333, 10.16666667, 10.167, 10.16733333, 10.16766667, 10.168,
10.16833333, 10.16866667, 10.169, 10.16933333, 10.16966667, 10.17,
10.17033333, 10.17066667, 10.171, 10.17133333, 10.17166667, 10.172,
10.17233333, 10.17266667, 10.173, 10.17333333, 10.17366667, 10.174,
10.17433333, 10.17466667, 10.175, 10.17533333, 10.17566667, 10.176
), Displacement = c(0.030035256, 0.029795879, 0.030194801, 0.030434119,
0.030673496, 0.030992586, 0.030753268, 0.030992586, 0.030992586,
0.030912814, 0.031710599, 0.032109521, 0.031949976, 0.031949976,
0.031710599, 0.032269066, 0.032348898, 0.032189294, 0.032588216,
0.032508443, 0.03306691, 0.03306691, 0.032827534, 0.033465774,
0.033864696, 0.033864696, 0.034024241, 0.034104014, 0.03498163,
0.034502936, 0.034901858, 0.035061403, 0.035061403, 0.035460325,
0.035300721, 0.035220948, 0.035460325, 0.035938961, 0.036018793,
0.036577201, 0.036497429, 0.035699643, 0.036417656, 0.036577201,
0.037215441, 0.037215441, 0.037454818, 0.037215441, 0.038093058,
0.038332376, 0.038172831, 0.038332376, 0.03849198, 0.038412149,
0.038412149, 0.03849198, 0.038970616, 0.038811071, 0.039449311,
0.039529083, 0.039369538, 0.039608856, 0.040167323, 0.0404067,
0.040486473, 0.040885336, 0.040885336, 0.041443803, 0.041204485,
0.04104494, 0.041364031, 0.04168318, 0.042002271, 0.042161875,
0.041762953, 0.042161875, 0.042640511, 0.043119205, 0.042720283,
0.043278751, 0.043438355, 0.0435979, 0.0435979, 0.044475458,
0.044555231, 0.044555231, 0.045113698, 0.045113698, 0.04487438,
0.04487438, 0.045273302, 0.04551262, 0.04551262, 0.045592393,
0.045592393, 0.045751938, 0.046071088, 0.046709328, 0.047188022,
0.047507113), Velocity = c(0.429684261, 0.431348944, 0.43301051,
0.434668832, 0.436323826, 0.43797547, 0.439623768, 0.441268702,
0.442910202, 0.444548146, 0.44618241, 0.447812952, 0.449439837,
0.451063153, 0.452682914, 0.454299046, 0.455911448, 0.457520018,
0.459124633, 0.460725144, 0.462321409, 0.463913313, 0.465500744,
0.467083567, 0.46866168, 0.470235057, 0.471803725, 0.473367716,
0.474927096, 0.476481989, 0.47803255, 0.479578921, 0.481121233,
0.482659616, 0.484194183, 0.485724998, 0.487252055, 0.48877532,
0.490294802, 0.491810588, 0.493322809, 0.494831545, 0.496336744,
0.49783827, 0.499336038, 0.500830063, 0.502320424, 0.503807201,
0.505290475, 0.506770383, 0.508247138, 0.509720962, 0.51119203,
0.512660458, 0.514126294, 0.515589503, 0.517050001, 0.518507705,
0.519962552, 0.521414518, 0.52286359, 0.524309728, 0.525752878,
0.527193042, 0.528630294, 0.530064758, 0.531496582, 0.532925942,
0.534353028, 0.535777981, 0.537200851, 0.53862164, 0.540040373,
0.54145712, 0.542871937, 0.544284816, 0.545695713, 0.547104642,
0.548511688, 0.549916946, 0.551320507, 0.55272247, 0.554122947,
0.555522075, 0.556920068, 0.55831722, 0.559713859, 0.561110329,
0.562506943, 0.563903923, 0.565301388, 0.566699422, 0.568098112,
0.569497523, 0.570897655, 0.572298438, 0.57369977, 0.57510159,
0.576503965, 0.577907113), Acceleration = c(4.972007635, 4.963533506,
4.954888415, 4.946078575, 4.937110277, 4.927989883, 4.918723829,
4.909318616, 4.899780811, 4.890117044, 4.880334004, 4.870438434,
4.860437133, 4.850336945, 4.840144763, 4.829867522, 4.8195122,
4.809085814, 4.798595419, 4.7880481, 4.77745097, 4.766811165,
4.756135833, 4.745432131, 4.734707211, 4.723968212, 4.713222253,
4.702476416, 4.691737741, 4.681013216, 4.670309764, 4.659634241,
4.648993426, 4.638394015, 4.627842622, 4.617345769, 4.606909887,
4.596541313, 4.586246287, 4.57603095, 4.565901339, 4.555863389,
4.545922925, 4.536085668, 4.526357225, 4.51674309, 4.507248637,
4.497879115, 4.488639649, 4.479535229, 4.470570712, 4.461750818,
4.453080131, 4.444563098, 4.43620403, 4.428007107, 4.419976375,
4.41211575, 4.404429016, 4.396919822, 4.389591681, 4.382447968,
4.375491909, 4.368726584, 4.362154915, 4.355779664, 4.349603424,
4.343628615, 4.337857479, 4.332292077, 4.326934288, 4.3217858,
4.316848115, 4.312122542, 4.307610193, 4.30331198, 4.299228611,
4.295360587, 4.291708192, 4.288271494, 4.285050331, 4.282044314,
4.279252814, 4.276674964, 4.27430965, 4.272155509, 4.270210929,
4.268474047, 4.266942753, 4.265614697, 4.264487291, 4.263557721,
4.262822954, 4.262279745, 4.261924646, 4.261754018, 4.26176403,
4.261950674, 4.262309763, 4.262836941), Fz = c(2803.144851, 2804.268212,
2805.386402, 2803.882646, 2806.130099, 2805.002781, 2805.381537,
2807.248207, 2804.994318, 2803.877555, 2804.246129, 2806.866598,
2805.738177, 2808.361986, 2804.623636, 2806.484599, 2806.47941,
2806.473638, 2808.353231, 2805.354752, 2805.350179, 2805.717618,
2807.958682, 2807.581191, 2808.698975, 2808.699364, 2808.31996,
2808.696056, 2809.062295, 2807.190907, 2807.938642, 2808.678026,
2809.427237, 2807.927649, 2806.802487, 2808.298362, 2808.664115,
2808.662072, 2810.534076, 2810.163071, 2810.532714, 2807.534268,
2808.654776, 2807.148297, 2810.140338, 2807.894831, 2807.15462,
2805.27566, 2806.024027, 2807.895383, 2809.020722, 2808.644009,
2809.014821, 2807.888767, 2807.516497, 2808.267977, 2807.882087,
2807.882476, 2807.883547, 2808.627925, 2807.505569, 2808.255687,
2807.881374, 2808.998931, 2810.494838, 2807.500413, 2808.630001,
2807.876542, 2806.37042, 2805.627014, 2805.250982, 2806.749046,
2805.248031, 2807.876315, 2803.769148, 2807.507547, 2806.372852,
2806.374149, 2807.132828, 2804.134998, 2801.893204, 2804.88283,
2805.625782, 2805.624647, 2806.743468, 2806.375316, 2806.007554,
2805.24949, 2805.254711, 2804.128026, 2805.253219, 2803.757766,
2804.505728, 2803.759874, 2804.132728, 2803.758447, 2804.873977,
2803.382188, 2805.255327, 2804.880365)), .Names = c("Time", "Displacement",
"Velocity", "Acceleration", "Fz"), row.names = 1235:1334, class = "data.frame")
我对r比较新,而且英语不是我的第一语言,所以如果你不理解这个问题,请发表评论。
答案 0 :(得分:1)
如果“Displacement”是距离度量,并且您想要一个11个值的序列来定义10个相等的长度间隔,那么使用它;
bounds <- with( lift_S1_Intns50_chainno,
seq( min(Displacement), max(Displacement), length=11)
)
如果您想在边界定义的类别中测量值Fz
的平均值,请使用此值。
bounds[11] <- bounds[11]+.000001 # to allow the last point to be in the 10th inerval.
Fzmeans <- with( lift_S1_Intns50_chainno,
tapply( Fz, findInterval( Displacement, bounds), mean)
)
然后将Fz均值绘制在位移区间的右端点上:
plot(bounds[-1], Fzmeans)