我的数据包含唯一标识符,类别和说明。 以下是玩具数据集。
prjnumber <- c(1,2,3,4,5,6,7,8,9,10)
category <- c("based","trill","lit","cold",NA,"epic", NA,NA,NA,NA)
description <- c("skip class",
"dunk on brayden",
"record deal",
"fame and fortune",
NA,
"female attention",
NA,NA,NA,NA)
toy.df <- data.frame(prjnumber, category, description)
> toy.df
prjnumber category description
1 1 based skip class
2 2 trill dunk on brayden
3 3 lit record deal
4 4 cold fame and fortune
5 5 <NA> <NA>
6 6 epic female attention
7 7 <NA> <NA>
8 8 <NA> <NA>
9 9 <NA> <NA>
10 10 <NA> <NA>
我想随机抽样&#39;类别&#39;和&#39;描述&#39;已填充的行中的列,用作缺少数据的行的填充。 最终的数据框架将是完整的,并且只依赖于包含数据的最初5行。该解决方案将保持列间相关性。 预期的输出是:
> toy.df
prjnumber category description
1 1 based skip class
2 2 trill dunk on brayden
3 3 lit record deal
4 4 cold fame and fortune
5 5 lit record deal
6 6 epic female attention
7 7 based skip class
8 8 based skip class
9 9 lit record deal
10 10 trill dunk on brayden
答案 0 :(得分:5)
complete = na.omit(toy.df)
toy.df[is.na(toy.df$category), c("category", "description")] =
complete[sample(1:nrow(complete), size = sum(is.na(toy.df$category)), replace = TRUE),
c("category", "description")]
toy.df
# prjnumber category description
# 1 1 based skip class
# 2 2 trill dunk on brayden
# 3 3 lit record deal
# 4 4 cold fame and fortune
# 5 5 lit record deal
# 6 6 epic female attention
# 7 7 cold fame and fortune
# 8 8 based skip class
# 9 9 epic female attention
# 10 10 epic female attention
如果您没有为NA
行填写的唯一标识符开始,这似乎会更直接......
答案 1 :(得分:5)
你可以尝试
library(dplyr)
toy.df %>%
mutate_each(funs(replace(., is.na(.), sample(.[!is.na(.)]))), 2:3)
根据新信息,我们可能需要在funs
中使用数字索引。
toy.df %>%
mutate(indx= replace(row_number(), is.na(category),
sample(row_number()[!is.na(category)], replace=TRUE))) %>%
mutate_each(funs(.[indx]), 2:3) %>%
select(-indx)
答案 2 :(得分:2)
使用Base R一次填充一个字段a,使用类似的东西(不保留字段之间的相关性):
fields <- c('category','description')
for(field in fields){
missings <- is.na(toy.df[[field]])
toy.df[[field]][missings] <- sample(toy.df[[field]][!missings],sum(missings),T)
}
并同时填充它们(保留字段之间的相关性)使用类似:
missings <- apply(toy.df[,fields],
1,
function(x)any(is.na(x)))
toy.df[missings,fields] <- toy.df[!missings,fields][sample(sum(!missings),
sum(missings),
T),]
当然,要避免apply(x,1,fun)
中的隐式for循环,您可以使用:
rowAny <- function(x) rowSums(x) > 0
missings <- rowAny(toy.df[,fields])