我正在关注动态编程的教程。请点击以下链接: http://www.8bitavenue.com/2011/11/dynamic-programming-maximum-contiguous-sub-sequence-sum/ 他们得出了一个关系:
M[j] = Max (A[j], A[j] + M[j-1])
但是在实现这个实际代码时我不能理解他们是如何使用它的。他们的实现是什么
//Initialize the first value in (M) and (b)
M[1] = A[1];
b[1] = 1;
//Initialize max as the first element in (M)
//we will keep updating max until we get the
//largest element in (M) which is indeed our
//MCSS value. (k) saves the (j) position of
//the max value (MCSS)
int max = M[1];
int k = 1;
//For each sub sequence ending at position (j)
for (int j = 2; j <= n; j++)
{
//M[j-1] + A[j] > A[j] is equivalent to M[j-1] > 0
if (M[j-1] > 0)
{
//Extending the current window at (j-1)
M[j] = M[j-1] + A[j];
b[j] = b[j-1];
}
else
{
//Starting a new window at (j)
M[j] = A[j];
b[j] = j;
}
//Update max and save (j)
if (M[j] > max)
{
max = M[j];
k = j;
}
}
print ("MCSS value = ", max, " starts at ", b[k], " ends at ", k);
我的问题是如何在此程序中使用派生公式?
他们不应该使用这样的东西:
for i in A:
M[j] = Max (A[j], A[j] + M[j-1])
答案 0 :(得分:0)
您的问题的答案已在此行中给出:
//M[j-1] + A[j] > A[j] is equivalent to M[j-1] > 0
if语句选择A [j]和M [j-1] + A [j]之间的较大值。 这会更清楚吗?
if (M[j-1] + A[j] > A[j]) // is exact the same thing as M[j-1] > 0, but less elegant
{
M[j] = M[j-1] + A[j];
b[j] = b[j-1];
}
else
{
M[j] = A[j];
b[j] = j;
}