在Ubuntu上,我有一个共享库mylibrary.so
,其函数为AlphaFunction
。我想使用dlopen
在C ++中加载此函数,然后在两个不同的线程中调用它。但是,这给了我运行时错误,大概是因为两个线程都试图访问存储函数的同一个内存。
库本身通过USB控制机器人手臂,我得到的实际运行时错误是:LIBUSB_ERROR_NO_DEVICE returned by the Write operation.
我知道如何使用std::atomic
来处理共享变量,但共享函数呢?
例如:
void Foo(int (*FooFunction)())
{
while(true)
{
FooFunction();
}
}
void Bar(int (*BarFunction)())
{
while(true)
{
BarFunction();
}
}
int main()
{
void* api_handle = dlopen("mylibrary.so", RTLD_NOW|RTLD_GLOBAL);
int (*MoveRobot)() = (int (*)()) dlsym(api_handle, "Move");
std::thread t1(Foo, MoveRobot);
std::thread t2(Bar, MoveRobot);
t1.join();
t2.join();
return 0;
}
答案 0 :(得分:1)
我看过评论。这是解决所有问题的解决方案:
这个答案提出了一个解决方案,其中第三个线程被启动,充当机器人请求编组器。其他线程将任务发布到该线程的队列中,这些队列一次执行一个,调用的结果通过呼叫者可以等待的未来返回。
#include <thread>
#include <mutex>
#include <queue>
#include <future>
#include <functional>
// these definitions here just to make the example compile
#define RTLD_NOW 1
#define RTLD_GLOBAL 2
extern "C" void* dlopen(const char*, int);
extern "C" void* dlsym(void*, const char*);
struct RobotCaller final
{
RobotCaller()
{
_library_handle = dlopen("mylibrary.so", RTLD_NOW|RTLD_GLOBAL);
_Move = (int (*)()) dlsym(_library_handle, "Move");
// caution - thread starts. do not derive from this class
start();
}
void start()
{
_robot_thread = std::thread([this]{
consume_queue();
});
}
~RobotCaller() {
if (_robot_thread.joinable()) {
std::unique_lock<std::mutex> lock(_queue_mutex);
_should_quit = true;
lock.unlock();
_queue_condition.notify_all();
_robot_thread.join();
}
// close library code goes here
}
std::future<int> Move()
{
return queue_task(_Move);
}
private:
void consume_queue() {
;
for(std::unique_lock<std::mutex> lock(_queue_mutex) ; !_should_quit ; lock.lock()) {
_queue_condition.wait(lock, [this]{
return _should_quit || (!_task_queue.empty());
});
if (!_task_queue.empty()) {
auto task = std::move(_task_queue.front());
_task_queue.pop();
lock.unlock();
task();
}
}
}
std::future<int> queue_task(int (*f)())
{
std::packaged_task<int()> task(f);
auto fut = task.get_future();
std::unique_lock<std::mutex> lock(_queue_mutex);
_task_queue.push(std::move(task));
return fut;
}
private:
// library management
void* _library_handle = nullptr;
int (*_Move)() = nullptr;
// queue management
std::thread _robot_thread;
std::queue<std::packaged_task<int()>> _task_queue;
bool _should_quit = false;
std::mutex _queue_mutex;
std::condition_variable _queue_condition;
};
void Foo(std::function<std::future<int>()> FooFunction)
{
while(true)
{
// marshal the call onto the robot queue and wait for a result
auto result = FooFunction().get();
}
}
void Bar(std::function<std::future<int>()> BarFunction)
{
while(true)
{
// marshal the call onto the robot queue and wait for a result
auto result = BarFunction().get();
}
}
int main()
{
RobotCaller robot_caller;
std::thread t1(Foo, std::bind(&RobotCaller::Move, &robot_caller));
std::thread t2(Bar, std::bind(&RobotCaller::Move, &robot_caller));
t1.join();
t2.join();
return 0;
}