我在数据集上使用了diff(x,)函数来找出时间间隔为0.0003秒的力之间的差异。问题是由于这种高采样频率和系统的测量误差,这不会产生任何有意义的数据。
我想知道是否有可能找到100个连续数字之间的差异。例如"差异=(Fz101 + Fz102 ... Fz200) - (Fz1 + Fz2 ... Fz100)
目前我除以0.000333(采样频率),因为我试图找到(delta Fz)/(delta t。)的峰值
(max(diff(lift_S8_Intns40_chainno$Fz)))/0.00033333
[1] 40472.2
看到一个类似的问题,问这是否有助于任何人帮助我。 [链接到类似的问题] [1] How to find the difference between sums of consecutive pairs and triplets in R?
任何帮助都很受欢迎,但我的技能并不好,所以请尽可能简单。
数据结构
structure(list(Time = c(18.31266667, 18.313, 18.31333333, 18.31366667,
18.314, 18.31433333, 18.31466667, 18.315, 18.31533333, 18.31566667,
18.316, 18.31633333, 18.31666667, 18.317, 18.31733333, 18.31766667,
18.318, 18.31833333, 18.31866667, 18.319, 18.31933333, 18.31966667,
18.32, 18.32033333, 18.32066667, 18.321, 18.32133333, 18.32166667,
18.322, 18.32233333, 18.32266667, 18.323, 18.32333333, 18.32366667,
18.324, 18.32433333, 18.32466667, 18.325, 18.32533333, 18.32566667,
18.326, 18.32633333, 18.32666667, 18.327, 18.32733333, 18.32766667,
18.328, 18.32833333, 18.32866667, 18.329, 18.32933333, 18.32966667,
18.33, 18.33033333, 18.33066667, 18.331, 18.33133333, 18.33166667,
18.332, 18.33233333, 18.33266667, 18.333, 18.33333333, 18.33366667,
18.334, 18.33433333, 18.33466667, 18.335, 18.33533333, 18.33566667,
18.336, 18.33633333, 18.33666667, 18.337, 18.33733333, 18.33766667,
18.338, 18.33833333, 18.33866667, 18.339, 18.33933333, 18.33966667,
18.34, 18.34033333, 18.34066667, 18.341, 18.34133333, 18.34166667,
18.342, 18.34233333, 18.34266667, 18.343, 18.34333333, 18.34366667,
18.344, 18.34433333, 18.34466667, 18.345, 18.34533333, 18.34566667,
18.346, 18.34633333, 18.34666667, 18.347, 18.34733333, 18.34766667,
18.348, 18.34833333, 18.34866667, 18.349, 18.34933333, 18.34966667,
18.35, 18.35033333, 18.35066667, 18.351, 18.35133333, 18.35166667,
18.352, 18.35233333, 18.35266667, 18.353, 18.35333333, 18.35366667,
18.354, 18.35433333, 18.35466667, 18.355, 18.35533333, 18.35566667,
18.356, 18.35633333, 18.35666667, 18.357, 18.35733333, 18.35766667,
18.358, 18.35833333, 18.35866667, 18.359, 18.35933333, 18.35966667,
18.36, 18.36033333, 18.36066667, 18.361, 18.36133333, 18.36166667,
18.362, 18.36233333, 18.36266667, 18.363, 18.36333333, 18.36366667,
18.364, 18.36433333, 18.36466667, 18.365, 18.36533333, 18.36566667,
18.366, 18.36633333, 18.36666667, 18.367, 18.36733333, 18.36766667,
18.368, 18.36833333, 18.36866667, 18.369, 18.36933333, 18.36966667,
18.37, 18.37033333, 18.37066667, 18.371, 18.37133333, 18.37166667,
18.372, 18.37233333, 18.37266667, 18.373, 18.37333333, 18.37366667,
18.374, 18.37433333, 18.37466667, 18.375, 18.37533333, 18.37566667,
18.376, 18.37633333, 18.37666667, 18.377, 18.37733333, 18.37766667,
18.378, 18.37833333, 18.37866667, 18.379), Fz = c(2751.996392,
2751.614101, 2752.364284, 2751.993635, 2751.615723, 2751.995127,
2751.989063, 2751.241442, 2749.366648, 2750.486962, 2748.242022,
2747.498762, 2748.245589, 2747.4998, 2748.254604, 2748.631317,
2749.006798, 2750.129349, 2749.38176, 2749.385262, 2748.640657,
2750.13658, 2748.640073, 2749.393888, 2750.145076, 2751.274421,
2750.157172, 2750.15688, 2750.165279, 2752.407479, 2752.042472,
2753.550297, 2752.424309, 2750.927558, 2751.688556, 2751.317583,
2752.819117, 2752.45398, 2752.836757, 2752.472626, 2754.353062,
2754.725527, 2755.111158, 2754.376021, 2752.882448, 2752.510924,
2754.006329, 2755.508722, 2756.638796, 2756.636202, 2757.76947,
2756.284199, 2757.408096, 2758.165381, 2757.418894, 2758.172774,
2758.178838, 2758.936415, 2758.56421, 2757.448825, 2757.824079,
2758.569203, 2759.69824, 2760.082914, 2759.711827, 2760.840004,
2761.215128, 2760.84743, 2760.099193, 2760.851808, 2759.359468,
2758.25031, 2758.624201, 2759.755281, 2760.511577, 2761.635327,
2763.137948, 2763.143331, 2761.64191, 2763.1528, 2762.406524,
2763.525491, 2763.157339, 2762.781356, 2763.909695, 2764.666851,
2763.919813, 2763.543975, 2763.928017, 2765.045866, 2765.426243,
2766.182961, 2765.058383, 2763.936351, 2765.06542, 2763.947052,
2764.699019, 2764.70424, 2763.584867, 2763.22145, 2763.975492,
2764.349189, 2764.354994, 2763.613307, 2760.9942, 2759.878475,
2762.486297, 2762.115389, 2763.994527, 2762.121615, 2762.876597,
2761.391148, 2761.391991, 2761.768055, 2761.769126, 2759.525662,
2758.406516, 2758.786634, 2758.783261, 2757.669758, 2756.920758,
2756.540737, 2756.545277, 2756.176055, 2756.171515, 2755.423667,
2754.67611, 2753.178257, 2752.423923, 2753.16895, 2748.678277,
2747.927494, 2746.429754, 2746.424955, 2746.797971, 2746.424663,
2745.674982, 2746.424792, 2743.432215, 2743.432994, 2741.179315,
2742.67553, 2739.672447, 2738.921647, 2738.173637, 2737.424005,
2736.294822, 2735.180735, 2734.431882, 2734.425007, 2733.301013,
2732.930623, 2730.676264, 2729.172881, 2728.424855, 2727.298218,
2726.930066, 2726.177678, 2724.680797, 2723.5587, 2723.931652,
2722.428675, 2721.683421, 2720.557108, 2718.311893, 2716.438883,
2717.549484, 2717.545139, 2718.671354, 2714.548217, 2716.42254,
2713.060416, 2714.557005, 2714.554119, 2712.681174, 2711.561898,
2710.437904, 2710.438585, 2709.688272, 2707.067122, 2708.192203,
2705.564778, 2707.439879, 2705.949079, 2705.573079, 2705.577036,
2704.828393, 2702.954102, 2702.20199, 2701.079406, 2699.206235,
2697.708138, 2695.836101, 2696.588814, 2696.968721, 2696.966354,
2696.970764, 2696.22504, 2694.349549, 2695.852121)), .Names = c("Time",
"Fz"), row.names = 1299:1498, class = "data.frame")
答案 0 :(得分:3)
以下是使用zoo
包
功能
library(zoo)
IntrvalsDif <- function(x, n) {
temp <- rollsum(x, n)
sapply(seq_len(length(x) - n + 1), function(x) temp[x + n] - temp[x])
}
测试
IntrvalsDif(df$Fz, 20)
# [1] 22.712120 31.780260 37.846728 48.042024 55.623904 59.831923 61.789132 67.470180 73.906584 79.581470
# [11] 81.889676 83.816224 80.498591 81.303658 85.113723 87.410109 91.579034 93.126436 97.284240 99.556696
# [21] 101.445531 99.204143 98.458872 96.574869 97.299629 101.391636 108.484213 111.843855 111.830721 108.817601
# [31] 108.804484 104.667484 103.899693 100.132011 94.484088 91.846433 88.453795 88.053184 85.777665 83.127912
# [41] 83.855688 84.967116 86.079728 84.951745 81.943294 79.311783 74.809550 70.305436 67.663273 68.031700
# [51] 68.010152 72.486929 78.453469 83.671546 86.262716 87.723876 86.573048 83.175009 80.529002 79.394259
# [61] 73.758934 70.745457 66.612867 64.351423 62.484932 55.371569 46.756346 42.618145 38.493014 34.730700
# [71] 27.612391 18.995970 6.271506 -3.829068 -10.178434 -18.028571 -24.761686 -32.615260 -40.093775 -46.838338
# [81] -52.458680 -61.082382 -69.714532 -78.721904 -86.991107 -88.898297 -88.564729 -94.941400 -102.449946 -114.087060
# [91] -120.115474 -131.764148 -140.435989 -151.731834 -164.906638 -176.581499 -185.261108 -191.700139 -198.144375 -208.693815
# [101] -217.378887 -226.065596 -232.122351 -241.185464 -251.002620 -264.177813 -277.722667 -288.293768 -297.354158 -303.775595
# [111] -313.566873 -314.745817 -316.279034 -317.070287 -318.979261 -322.381222 -328.406668 -334.420050 -342.305322 -345.705694
# [121] -351.343224 -352.849444 -359.231092 -360.347288 -361.457419 -363.321285 -366.306745 -366.670795 -366.308869 -364.077356
# [131] -365.210203 -366.711412 -371.584748 -371.950517 -369.317205 -366.687770 -363.297645 -361.044891 -356.536870 -352.777977
# [141] -349.395261 -347.887047 -344.504089 -340.758605 -337.002095 -329.879165 -319.755890 -313.731643 -310.687084 -311.395920
# [151] -304.987941 -305.325773 -300.807844 -303.409489 -306.756032 -306.724804 -305.584028 -302.559006 -301.033458 -301.379656
# [161] -296.103079 NA NA NA NA NA NA NA NA NA
# [171] NA NA NA NA NA NA NA NA NA NA
# [181] NA