在现有数据框中添加多行

时间:2015-05-06 15:30:35

标签: python pandas ipython

您好我正在学习数据科学,并且正在尝试从各个行业的公司列表中创建一个大数据公司列表。

我有一个大数据公司的行号列表,名为comp_rows。 现在,我正在尝试根据行号与过滤后的公司建立新的数据框。在这里,我需要向现有数据帧添加行,但是我收到了错误。有人可以帮忙吗?

我的数据框看起来像这样。

    company_url company tag_line    product data
0   https://angel.co/billguard  BillGuard   The fastest smartest way to track your spendin...   BillGuard is a personal finance security app t...   New York City · Financial Services · Security ...
1   https://angel.co/tradesparq Tradesparq  The world's largest social network for global ...   Tradesparq is Alibaba.com meets LinkedIn. Trad...   Shanghai · B2B · Marketplaces · Big Data · Soc...
2   https://angel.co/sidewalk   Sidewalk    Hoovers (D&B) for the social era    Sidewalk helps companies close more sales to s...   New York City · Lead Generation · Big Data · S...
3   https://angel.co/pangia Pangia  The Internet of Things Platform: Big data mana...   We collect and manage data from sensors embedd...   San Francisco · SaaS · Clean Technology · Big ...
4   https://angel.co/thinknum   Thinknum    Financial Data Analysis Thinknum is a powerful web platform to value c...   New York City · Enterprise Software · Financia...

我的代码如下:

bigdata_comp = DataFrame(data=None,columns=['company_url','company','tag_line','product','data'])

for count, item in enumerate(data.iterrows()):
    for number in comp_rows:
        if int(count) == int(number):
            bigdata_comp.append(item)

错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-234-1e4ea9bd9faa> in <module>()
      4     for number in comp_rows:
      5         if int(count) == int(number):
----> 6             bigdata_comp.append(item)
      7 

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/frame.pyc in append(self, other, ignore_index, verify_integrity)
   3814         from pandas.tools.merge import concat
   3815         if isinstance(other, (list, tuple)):
-> 3816             to_concat = [self] + other
   3817         else:
   3818             to_concat = [self, other]

TypeError: can only concatenate list (not "tuple") to list

2 个答案:

答案 0 :(得分:2)

您似乎正在尝试根据索引(存储在名为comp_rows的变量中)过滤掉现有数据框。您可以使用loc而不使用循环来执行此操作,如下所示:

In [1161]: df1.head()
Out[1161]: 
          A         B         C         D
a  1.935094 -0.160579 -0.173458  0.433267
b  1.669632 -1.130893 -1.210353  0.822138
c  0.494622  1.014013  0.215655  1.045139
d -0.628889  0.223170 -0.616019 -0.264982
e -0.823133  0.385790 -0.654533  0.582255

我们将获得带索引的行&#39; a&#39;&#39; b&#39;和&#39; c&#39;,对于所有列:

In [1162]: df1.loc[['a','b','c'],:]
Out[1162]: 
          A         B         C         D
a  1.935094 -0.160579 -0.173458  0.433267
b  1.669632 -1.130893 -1.210353  0.822138
c  0.494622  1.014013  0.215655  1.045139

您可以阅读更多相关信息here.

关于您的代码:

1。 您无需遍历列表以查看其中是否存在项目: 使用in运算符。例如 -

In [1199]: 1 in [1,2,3,4,5]
Out[1199]: True

所以,而不是

for number in comp_rows:
        if int(count) == int(number):

这样做

if number in comp_rows

2。 大熊猫append不会就地发生。您必须将结果存储到另一个变量中。请参阅here

3

一次追加一行是做你想做的慢的方法。 而是将要添加的每一行保存到列表列表中,创建一个数据帧并一次性将其附加到目标数据帧。像这样......

temp = []
for count, item in enumerate(df1.loc[['a','b','c'],:].iterrows()):
    # if count in comp_rows:
    temp.append( list(item[1]))

## -- End pasted text --

In [1233]: temp
Out[1233]: 
[[1.9350940285526077,
  -0.16057932637141861,
  -0.17345827000000605,
  0.43326722021644282],
 [1.66963201034217,
  -1.1308932586268696,
  -1.2103527446031515,
  0.82213753819050794],
 [0.49462218161377397,
  1.0140133740187862,
  0.2156547595968879,
  1.0451391564351897]]

In [1236]: df2 = df1.append(pd.DataFrame(temp, columns=['A','B','C','D']))

In [1237]: df2
Out[1237]: 
          A         B         C         D
a  1.935094 -0.160579 -0.173458  0.433267
b  1.669632 -1.130893 -1.210353  0.822138
c  0.494622  1.014013  0.215655  1.045139
d -0.628889  0.223170 -0.616019 -0.264982
e -0.823133  0.385790 -0.654533  0.582255
f -0.872135  2.938475 -0.099367 -1.472519
0  1.935094 -0.160579 -0.173458  0.433267
1  1.669632 -1.130893 -1.210353  0.822138
2  0.494622  1.014013  0.215655  1.045139

答案 1 :(得分:0)

替换以下行:

for count, item in enumerate(data.iterrows()):

通过

for count, (index, item) in enumerate(data.iterrows()):

甚至只是

for count, item in data.iterrows():