我有一个数据框punkt_tabelle
,其中包含游戏中的得分。每个游戏有2套或3套(MRE中为3套)。数据框包含这些点的制作方式。我也有分数的结尾,该分数存储在scores
中。
我计算每个组中每个团队的总和。 (我在total_pts
中做到了)。
我要达到的目的是将数据表(每个团队和每个集合)的得分总和与该团队根据scores
得出的得分进行比较。如果此集合中的scores
大于按total
计算得出的总和,那么我想向数据表中添加额外的一行。此新行应包含队名,此行的设置和技能应为“其他错误” ,并且Pkt
的值应为{{1} }和scores
。也许(在MRE中就是这种情况),必须为每个团队和每个组添加一个新行。
如果您要在添加新行后重新重新运行total_pts计算,则它将等于total
中的结果。
我根据这些问题和文章(R Conditional evaluation when using the pipe operator %>%,Inserting a new row to data frame for each group id)尝试了以下代码的变体,但无法解决我的问题。
这是我代码的最新版本:
scores
可以这样进行吗?还是我需要使用循环并为每个组和每个团队手动执行? 请帮忙!
编辑: 此示例中的预期输出如下所示:
library(dplyr)
library (devtools)
punkt_tabelle <- structure(list(Team = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("Miller/Myer", "Winter/Summer"), class = "factor"),
Skill = structure(c(1L, 1L, 3L, 2L, 2L, 2L, 1L, 1L, 3L, 2L,
2L, 2L, 4L, 4L, 5L, 6L, 6L, 6L, 4L, 4L, 5L, 6L, 6L, 6L), .Label = c("Attack",
"Service", "Block", "Opp. Attack Error", "Opp. Block Error",
"Opp. Serve Error"), class = "factor"), Set = c(2L, 3L, 2L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 2L, 3L, 2L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L), Pkt = c(2L, 1L, 1L, 0L, 0L, 0L,
3L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 1L, 0L)), row.names = c(NA, -24L), vars = c("Team", "Skill"
), indices = list(0:1, 2L, 18:19, 20L, 21:23, 3:5, 6:7, 8L, 12:13,
14L, 15:17, 9:11), group_sizes = c(2L, 1L, 2L, 1L, 3L, 3L,
2L, 1L, 2L, 1L, 3L, 3L), biggest_group_size = 3L, labels = structure(list(
Team = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L), .Label = c("Miller/Myer", "Winter/Summer"), class = "factor"),
Skill = c("Attack", "Block", "Opp. Attack Error", "Opp. Block Error",
"Opp. Serve Error", "Service", "Attack", "Block", "Opp. Attack Error",
"Opp. Block Error", "Opp. Serve Error", "Service")), row.names = c(NA,
-12L), class = "data.frame", vars = c("Team", "Skill")), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))
score_miller_myer <- c(3,6,3) #total points in sets 1, 2, 3
score_winter_summer <- c(5,4,5)
scores <- c(score_miller_myer, score_winter_summer)
#calculate the sum of the points per team and per set
total_pts <- punkt_tabelle %>% group_by(Team, Set) %>% summarize(total = sum(Pkt))
total_pts
#try to compare with the score and add en entry in the dataframe
punkt_tabelle %>%
group_by (Team, Set) %>%
mutate(total = sum(Pkt)) %>%
{if (total<scores) dplyr::bind_rows(Team=Team, Set=Set, Skill="Opp. Other Error", Pkt=(total-scores))}
punkt_tabelle
该问题的进一步说明: 一个团队以各种方式得分。他们要么自己得分(进攻,发球,盖帽),要么对手犯错(进攻错误,进攻发球,盖帽错误)。仍然给他们达到的总分留下一些差异,因为对手的一些错误未指定。为此,我想在计算出差异后添加一行“其他错误”。
示例:在第26行中,Pkt的值为1,因为在第2组团队的Team Skill Set Pkt
<fct> <fct> <int> <int>
1 Miller/Myer Attack 2 2
2 Miller/Myer Attack 3 1
3 Miller/Myer Block 2 1
4 Miller/Myer Service 1 0
5 Miller/Myer Service 2 0
6 Miller/Myer Service 3 0
7 Winter/Summer Attack 1 3
8 Winter/Summer Attack 2 1
9 Winter/Summer Block 3 1
10 Winter/Summer Service 1 0
11 Winter/Summer Service 2 1
12 Winter/Summer Service 3 1
13 Winter/Summer Opp. Attack Error 2 0
14 Winter/Summer Opp. Attack Error 3 0
15 Winter/Summer Opp. Block Error 2 0
16 Winter/Summer Opp. Serve Error 1 0
17 Winter/Summer Opp. Serve Error 2 1
18 Winter/Summer Opp. Serve Error 3 1
19 Miller/Myer Opp. Attack Error 1 1
20 Miller/Myer Opp. Attack Error 2 0
21 Miller/Myer Opp. Block Error 3 0
22 Miller/Myer Opp. Serve Error 1 0
23 Miller/Myer Opp. Serve Error 2 1
24 Miller/Myer Opp. Serve Error 3 0
25 Winter/Summer Opp. Other Error 1 2 #here start the added rows
26 Winter/Summer Opp. Other Error 2 1
27 Winter/Summer Opp. Other Error 3 2
28 Miller/Myer Opp. Other Error 1 2
29 Miller/Myer Opp. Other Error 2 2
30 Miller/Myer Opp. Other Error 3 2
中,Winter / Summer获得3分。但是他们在第2组中根据total_pts
的得分是4分。因此,在新行中添加了1点的差异。
答案 0 :(得分:0)
这里有可能。
首先,我们需要将scores
存储在data.frame
中,其中包含有关Team
和Set
的信息
df.scores <- data.frame(
Team = c(rep("Miller/Myer", 3), rep("Winter/Summer", 3)),
Set = 1:3,
scores = scores)
让我们检查df.scores
df.scores
# Team Set scores
#1 Miller/Myer 1 3
#2 Miller/Myer 2 6
#3 Miller/Myer 3 3
#4 Winter/Summer 1 5
#5 Winter/Summer 2 4
#6 Winter/Summer 3 5
接下来,我们对punk_tabelle
和{{1}进行df.scores
和Team
的左Set
左连接,并按{{ 1}}和Total = sum(Pkt)
;然后Team
由Set
和Opp. Other Error
之间的差给出。通过长到宽到长的转换,可以达到最终的预期输出。
scores