我想将numpy数组中的特定值设置为NaN
(从行方式计算中排除它们)。
我试过
import numpy
x = numpy.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]])
cutoff = [5, 7]
for i in range(len(x)):
x[i][0:cutoff[i]:1] = numpy.nan
查看x
,我只看到-9223372036854775808
我期望的NaN
。
我想到了另一种选择:
for i in range(len(x)):
for k in range(cutoff[i]):
x[i][k] = numpy.nan
什么都没发生。我做错了什么?
答案 0 :(得分:6)
nan
是一个浮点值。当x
是具有整数dtype的数组时,不能为其指定nan值。将nan
分配给整数dtype数组时,该值将自动转换为int:
In [85]: np.array(np.nan).astype(int).item()
Out[85]: -9223372036854775808
因此,要修复代码,请将x
数组设为float dtype:
x = numpy.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]],
dtype=float)
import numpy
x = numpy.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]],
dtype=float)
cutoff = [5, 7]
for i in range(len(x)):
x[i][0:cutoff[i]:1] = numpy.nan
print(x)
产量
array([[ nan, nan, nan, nan, nan, 5., 6., 7., 8., 9.],
[ nan, nan, nan, nan, nan, nan, nan, 0., 1., 0.]])
答案 1 :(得分:4)
将适当元素设置为NaN的矢量化方法
@unutbu's solution必须摆脱你得到的价值错误。如果您希望vectorize
获得性能,可以使用boolean indexing
,如此 -
import numpy as np
# Create mask of positions in x (with float datatype) where NaNs are to be put
mask = np.asarray(cutoff)[:,None] > np.arange(x.shape[1])
# Put NaNs into masked region of x for the desired ouput
x[mask] = np.nan
示例运行 -
In [92]: x = np.random.randint(0,9,(4,7)).astype(float)
In [93]: x
Out[93]:
array([[ 2., 1., 5., 2., 5., 2., 1.],
[ 2., 5., 7., 1., 5., 4., 8.],
[ 1., 1., 7., 4., 8., 3., 1.],
[ 5., 8., 7., 5., 0., 2., 1.]])
In [94]: cutoff = [5,3,0,6]
In [95]: x[np.asarray(cutoff)[:,None] > np.arange(x.shape[1])] = np.nan
In [96]: x
Out[96]:
array([[ nan, nan, nan, nan, nan, 2., 1.],
[ nan, nan, nan, 1., 5., 4., 8.],
[ 1., 1., 7., 4., 8., 3., 1.],
[ nan, nan, nan, nan, nan, nan, 1.]])
直接计算适当元素的行方式的矢量化方法
如果您尝试获取屏蔽的平均值,则可以修改先前提出的矢量化方法,以避免完全处理NaNs
,更重要的是保持x
整数值。这是修改后的方法 -
# Get array version of cutoff
cutoff_arr = np.asarray(cutoff)
# Mask of positions in x which are to be considered for row-wise mean calculations
mask1 = cutoff_arr[:,None] <= np.arange(x.shape[1])
# Mask x, calculate the corresponding sum and thus mean values for each row
masked_mean_vals = (mask1*x).sum(1)/(x.shape[1] - cutoff_arr)
以下是此类解决方案的示例运行 -
In [61]: x = np.random.randint(0,9,(4,7))
In [62]: x
Out[62]:
array([[5, 0, 1, 2, 4, 2, 0],
[3, 2, 0, 7, 5, 0, 2],
[7, 2, 2, 3, 3, 2, 3],
[4, 1, 2, 1, 4, 6, 8]])
In [63]: cutoff = [5,3,0,6]
In [64]: cutoff_arr = np.asarray(cutoff)
In [65]: mask1 = cutoff_arr[:,None] <= np.arange(x.shape[1])
In [66]: mask1
Out[66]:
array([[False, False, False, False, False, True, True],
[False, False, False, True, True, True, True],
[ True, True, True, True, True, True, True],
[False, False, False, False, False, False, True]], dtype=bool)
In [67]: masked_mean_vals = (mask1*x).sum(1)/(x.shape[1] - cutoff_arr)
In [68]: masked_mean_vals
Out[68]: array([ 1. , 3.5 , 3.14285714, 8. ])