如何解决具有无限状态空间的二维马尔可夫链

时间:2015-05-03 00:28:14

标签: markov-chains queueing

我有二维马尔可夫链,我想计算稳态概率,然后计算基本性能测量值,如预期客户数量,预计等待时间等。您可以查看下面的转换率图表链接:

http://tinypic.com/view.php?pic=2n063dd&s=8

当我搜索解决方法时,会出现矩阵几何和光谱扩展方法。我试过矩阵几何方法,但是因为我的马尔可夫链不是重复的,所以它不起作用。

我读了一些论文(例如,一类马尔可夫模型的谱扩展解:应用和矩阵几何方法的比较),但我无法弄清楚如何创建矩阵以及什么是稳态概率。

  1. 光谱扩展方法是否需要“重复过程”作为矩阵几何方法呢?如果不是,如何申请我的问题?
  2. 还有其他计算方法吗?
  3. 感谢您的帮助!

    阿里

1 个答案:

答案 0 :(得分:0)

First, there is no stable solution method for two-way infinite lattice strip. At least one variable should be capacitated. Second, the following are the most known solution methods for two-dimensional Markov chains with semi-infinite or finite state space:

  • Spectral Expansion Method
  • Matrix Geometric Method
  • Block Gauss-Seidel Method
  • Seelen's Method

All methods require high computational work. Experimental studies show that for semi-infinite lattice strip, as the capacitated variable exceeds 50, solution may not be trustable. Also there is a state explosion problem beyond that threshold. To overcome the state explosion problem, iterative methods are used such Gauss-Seidel and Seelen's methods.

Regarding my problem, I determined capacity for both variables. After a search in the literature, block Gauss-Seidel Iterative method seems to be the most appropriate method to apply my problem.

Thank you.