在R中使用nls.lm进行模型拟合,"错误:未使用的参数"

时间:2015-05-01 10:24:45

标签: r nls model-fitting

我试图在minpack.lm中使用nls.lm函数将非线性模型拟合到心理物理实验中的一些数据。

我已经进行了搜索,无法找到有关该软件包的大量信息,因此基本上复制了nls.lm帮助页面上给出的示例格式。不幸的是我的脚本仍然无法运行而R正在抛出此错误:

Error in fn(par, ...) : 
unused argument (observed = c(0.1429, 0.2857, 0.375, 0.3846, 0.4667, 0.6154))

看起来脚本认为我想要适合模型的数据是无关紧要的,这绝对是错误的。

我希望它适合模型并为备用参数(w)产生0.5403的值。

非常感谢任何帮助。 我正在从Matlab转移到R,如果我的代码看起来很草率,那么道歉。

这是脚本。

  install.packages("pracma")
  require(pracma)
  install.packages("minpack.lm")
  require(minpack.lm)

  # Residual function, uses parameter w (e.g. .23) to predict accuracy error at a given ratio [e.g. 2:1]
  residFun=function(w,n) .5 * erfc( abs(n[,1]-n[,2])/ ((sqrt(2)*w) * sqrt( (n[,1]^2) + (n[,2]^2) ) ) )

  # example for residFun
  # calculates an error rate of 2.59%
  a=matrix(c(2,1),1,byrow=TRUE)
  residFun(.23,a)

  # Initial guess for parameter to be fitted (w)
  parStart=list(w=0.2)

  # Recorded accuracies in matrix, 1- gives errors to input into residFun
  # i.e. the y-values I want to fit the model
  Acc=1-(matrix(c(0.8571,0.7143,0.6250,0.6154,0.5333,0.3846),ncol=6))

  # Ratios (converted to proportions) used in testing
  # i.e. the points along the x-axis to fit the above data to
  Ratios=matrix(c(0.3,0.7,0.4,0.6,0.42,0.58,0.45,0.55,0.47,0.53,0.49,0.51),nrow=6,byrow=TRUE)

  # non-linear model fitting, attempting to calculate the value of w using the Levenberg-Marquardt nonlinear least-squares algorithm 
  output=nls.lm(par=parStart,fn=residFun,observed=Acc,n=Ratios)

  # Error message shown after running
  # Error in fn(par, ...) : 
  #   unused argument (observed = c(0.1429, 0.2857, 0.375, 0.3846, 0.4667, 0.6154))

1 个答案:

答案 0 :(得分:2)

错误意味着您向函数传递了一个它没有预料到的参数。 ?nls.lm没有参数observed,因此传递给传递给fn的函数,在您的情况下为residFun。但是,residFun也不期望这个论点,因此错误。您需要重新定义此函数:

# Residual function, uses parameter w (e.g. .23) to predict accuracy error at a given ratio [e.g. 2:1]
residFun=function(par,observed, n) {
  w <- par$w
  r <- observed - (.5 * erfc( abs(n[,1]-n[,2])/ ((sqrt(2)*w) * sqrt( (n[,1]^2) + (n[,2]^2) ) ) ))
  return(r)
}

它给出了以下结果:

> output = nls.lm(par=parStart,fn=residFun,observed=Acc,n=Ratios)
> output
Nonlinear regression via the Levenberg-Marquardt algorithm
parameter estimates: 0.540285874836135 
residual sum-of-squares: 0.02166
reason terminated: Relative error in the sum of squares is at most `ftol'.

为什么会这样:

看来你在documentation

中受到了这个例子的启发
## residual function
residFun <- function(p, observed, xx) observed - getPred(p,xx)
## starting values for parameters
parStart <- list(a=3,b=-.001, c=1)
## perform fit
nls.out <- nls.lm(par=parStart, fn = residFun, observed = simDNoisy,
xx = x, control = nls.lm.control(nprint=1))

请注意,此处observedresidFun的参数。