我在一个名为price_data
的数据框中有来自雅虎财经的每日股票价格数据。
我想在此添加一列,该列提供Adj Close
列的时间序列趋势的拟合值。
以下是我正在使用的数据的结构:
In [41]: type(price_data)
Out[41]: pandas.core.frame.DataFrame
In [42]: list(price_data.columns.values)
Out[42]: ['Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close']
In [45]: type(price_data.index)
Out[45]: pandas.tseries.index.DatetimeIndex
在Python语言中实现这一目标的最佳方法是什么?
顺便说一句,以下是用R语言实现的
all_time_fitted <- function(data)
{
all_time_model <- lm(Adj.Close ~ Date, data=data)
fitted_value <- predict(all_time_model)
return(fitted_value)
}
以下是一些示例数据:
In [3]: price_data
Out[3]:
Open High Low Close Volume Adj Close
Date
2005-09-27 21.05 21.40 19.10 19.30 961200 19.16418
2005-09-28 19.30 20.53 19.20 20.50 5747900 20.35573
2005-09-29 20.40 20.58 20.10 20.21 1078200 20.06777
2005-09-30 20.26 21.05 20.18 21.01 3123300 20.86214
2005-10-03 20.90 21.75 20.90 21.50 1057900 21.34869
2005-10-04 21.44 22.50 21.44 22.16 1768800 22.00405
2005-10-05 22.10 22.31 21.75 22.20 904300 22.04377
答案 0 :(得分:6)
又快又脏......
# get some data
import pandas.io.data as web
import datetime
start = datetime.datetime(2015, 1, 1)
end = datetime.datetime(2015, 4, 30)
df=web.DataReader("F", 'yahoo', start, end)
# a bit of munging - better column name - Day as integer
df = df.rename(columns={'Adj Close':'AdjClose'})
dayZero = df.index[0]
df['Day'] = (df.index - dayZero).days
# fit a linear regression
import statsmodels.formula.api as sm
fit = sm.ols(formula="AdjClose ~ Day", data=df).fit()
print(fit.summary())
predict = fit.predict(df)
df['fitted'] = predict
# plot
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(8,4))
ax.scatter(df.index, df.AdjClose)
ax.plot(df.index, df.fitted, 'r')
ax.set_ylabel('$')
fig.suptitle('Yahoo')
plt.show()