我的问题涉及在多索引级别的分区中调用.diff()
在下面的示例中输出第一个
df.diff()是
values
Greek English
alpha a NaN
b 2
c 2
d 2
beta e 11
f 1
g 1
h 1
但我希望它是:
values
Greek English
alpha a NaN
b 2
c 2
d 2
beta e NaN
f 1
g 1
h 1
这是一个解决方案,使用循环,但我想我可以避免循环!
import pandas as pd
import numpy as np
df = pd.DataFrame({'values' : [1.,3.,5.,7.,18.,19.,20.,21.],
'Greek' : ['alpha', 'alpha', 'alpha', 'alpha','beta','beta','beta','beta'],
'English' : ['a', 'b', 'c', 'd','e','f','g','h']})
df.set_index(['Greek','English'],inplace =True)
print df
# (1.) This is not the type of .diff() i want.
# I need it to respect the level='Greek' and restart
print df.diff()
# this is one way to achieve my desired result but i have to think
# there is a way that does not involve the need to loop.
idx = pd.IndexSlice
for greek_letter in df.index.get_level_values('Greek').unique():
df.loc[idx[greek_letter,:]]['values'] = df.loc[idx[greek_letter,:]].diff()
print df
答案 0 :(得分:10)
只需level=0
In [179]:
df.groupby(level=0)['values'].diff()
Out[179]:
Greek English
alpha a NaN
b 2
c 2
d 2
beta e NaN
f 1
g 1
h 1
dtype: float64
或'希腊'如果您愿意,那么您可以在值上调用groupby
:
adt-bundle-windows-x86-20140702