我想将图像旋转90度。我的代码如下:
int main(int argc, const char * argv[]) {
Mat img = imread("/Users/chuanliu/Desktop/src4/p00.JPG");
resize(img, img, Size(1024, 683));
imwrite("/Users/chuanliu/Desktop/resize.jpg", img);
Mat dst;
Mat rot_mat = getRotationMatrix2D(Point(img.cols / 2.0, img.rows / 2.0), 90, 1);
warpAffine(img, dst, rot_mat, Size(img.rows, img.cols));
imwrite("/Users/chuanliu/Desktop/roatation.jpg", dst);
return 0;
}
但结果如下:
轮换前:
轮换后:
似乎旋转中心有错误。但我不认为我设置了一个错误的中心。有谁能告诉我出了什么问题?
答案 0 :(得分:2)
中心是根据源图像的尺寸Point(img.cols / 2.0, img.rows / 2.0)
指定的,但您不仅要在调用warpAffine
时旋转图像,还要在输出尺寸中交换宽度和高度:
Size(img.rows, img.cols)
因此看起来您可能需要根据输出图像坐标指定中心;例如。 Point(rows/2, cols/2)
。
<强>更新强>
不,那不是解决方案。实际上有一种非常简单有效的方法可以将图像旋转90度:使用cv::transpose()
函数:
int main()
{
cv::Mat img = cv::imread("5syfi.jpg");
cv::Mat img_rotated;
cv::transpose(img, img_rotated);
cv::imwrite("out.jpg", img_rotated);
return 0;
}
使用cv::transpose()
(旋转)和cv::flip()
(垂直和水平镜像)的组合,您可以非常快速地执行90度,180度和270度的旋转。
使用warpAffine()
要灵活得多,但计算起来要贵得多(即慢)。因此,如果您只需要旋转90度的倍数,请使用cv::transpose
。如果需要以任意角度旋转,请使用warpAffine/warpPerspective
功能。 @ Micka的回答给出了如何做到这一点的一个很好的例子。
答案 1 :(得分:2)
改编我的答案:
OpenCV 2.4.3 - warpPerspective with reversed homography on a cropped image
您可以使用此代码:
int main(int argc, const char * argv[]) {
cv::Mat img = cv::imread("../inputData/rotationInput.jpg");
cv::imshow("input", img);
cv::Mat dst;
cv::Mat rot_mat = cv::getRotationMatrix2D(cv::Point(img.cols / 2.0, img.rows / 2.0), 90, 1);
//cv::warpAffine(img, dst, rot_mat, cv::Size(img.rows, img.cols));
// since I didnt write the code for affine transformations yet, we have to embed the affine rotation matrix in a perspective transformation
cv::Mat perspRotation = cv::Mat::eye(3,3, CV_64FC1);
for(int j=0; j<rot_mat.rows; ++j)
for(int i=0; i<rot_mat.cols; ++i)
{
perspRotation.at<double>(j,i) = rot_mat.at<double>(j,i);
}
// image boundary corners:
std::vector<cv::Point> imageCorners;
imageCorners.push_back(cv::Point(0,0));
imageCorners.push_back(cv::Point(img.cols,0));
imageCorners.push_back(cv::Point(img.cols,img.rows));
imageCorners.push_back(cv::Point(0,img.rows));
// look at where the image will be placed after transformation:
cv::Rect warpedImageRegion = computeWarpedContourRegion(imageCorners, perspRotation);
// adjust the transformation so that the top-left corner of the transformed image will be placed at (0,0) coordinate
cv::Mat adjustedTransformation = adjustHomography(warpedImageRegion, perspRotation);
// finally warp the image
cv::warpPerspective(img, dst, adjustedTransformation, warpedImageRegion.size());
//mwrite("/Users/chuanliu/Desktop/roatation.jpg", dst);
cv::imwrite("../outputData/rotationOutput.png", dst);
cv::imshow("out", dst);
cv::waitKey(0);
return 0;
}
使用这些辅助函数:
cv::Rect computeWarpedContourRegion(const std::vector<cv::Point> & points, const cv::Mat & homography)
{
std::vector<cv::Point2f> transformed_points(points.size());
for(unsigned int i=0; i<points.size(); ++i)
{
// warp the points
transformed_points[i].x = points[i].x * homography.at<double>(0,0) + points[i].y * homography.at<double>(0,1) + homography.at<double>(0,2) ;
transformed_points[i].y = points[i].x * homography.at<double>(1,0) + points[i].y * homography.at<double>(1,1) + homography.at<double>(1,2) ;
}
// dehomogenization necessary?
if(homography.rows == 3)
{
float homog_comp;
for(unsigned int i=0; i<transformed_points.size(); ++i)
{
homog_comp = points[i].x * homography.at<double>(2,0) + points[i].y * homography.at<double>(2,1) + homography.at<double>(2,2) ;
transformed_points[i].x /= homog_comp;
transformed_points[i].y /= homog_comp;
}
}
// now find the bounding box for these points:
cv::Rect boundingBox = cv::boundingRect(transformed_points);
return boundingBox;
}
cv::Mat adjustHomography(const cv::Rect & transformedRegion, const cv::Mat & homography)
{
if(homography.rows == 2) throw("homography adjustement for affine matrix not implemented yet");
// unit matrix
cv::Mat correctionHomography = cv::Mat::eye(3,3,CV_64F);
// correction translation
correctionHomography.at<double>(0,2) = -transformedRegion.x;
correctionHomography.at<double>(1,2) = -transformedRegion.y;
return correctionHomography * homography;
}
并将此输出产生90°:
此输出为33°
顺便说一下,如果你只想旋转90°/ 180°,可能会有比图像变形更有效,更准确(有关插值)的方法!!