我有以下数据(data_current
):
import pandas as pd
import numpy as np
data_current=pd.DataFrame({'medicine':['green tea','fried tomatoes','meditation','meditation'],'disease':['acne','hypertension', 'cancer','lupus']})
data_current
我想要做的是转移其中一个柱子,这样我就可以为每种药物配备一排疾病,而不是多排同一种药物和不同的疾病。保持索引尽可能简单也很重要,即0,1,2 ......即我不想将“药物”指定为索引列,因为我会将其合并到其他键上。
所以,我需要获得data_needed
data_needed=pd.DataFrame({'medicine':['green tea','fried tomatoes','meditation'],'disease_1':['acne','hypertension','cancer'], 'disease_2':['np.nan','np.nan','lupus']})
data_needed
答案 0 :(得分:5)
我在想你想要一个数据透视表。查看此链接以获取更多信息 - > http://pandas.pydata.org/pandas-docs/stable/reshaping.html
你觉得这个输出可以接受吗?
data_current.pivot(index='medicine', columns='disease', values='disease')
答案 1 :(得分:2)
这是实现输出的一个
首先,在groupby
上medicine
并获取disease
作为列表
In [368]: md = (data_current.groupby('medicine')
.apply(lambda x: x['disease'].tolist())
.reset_index())
In [369]: md
Out[369]:
medicine 0
0 fried tomatoes [hypertension]
1 green tea [acne]
2 meditation [cancer, lupus]
然后将列中的列表转换为单独的列
In [370]: dval = pd.DataFrame(md[0].tolist(), )
In [371]: dval
Out[371]:
0 1
0 hypertension None
1 acne None
2 cancer lupus
现在,您可concat
- md
dval
In [372]: md = md.drop(0, axis=1)
In [373]: data_final = pd.concat([md, dval], axis=1)
并根据需要重命名列。
In [374]: data_final.columns = ['medicine', 'disease_1', 'disease_2']
In [375]: data_final
Out[375]:
medicine disease_1 disease_2
0 fried tomatoes hypertension None
1 green tea acne None
2 meditation cancer lupus
答案 2 :(得分:0)
dc = data_current
dc['disease_header'] = dc.diseases.replace(
dict(zip(diseases,
map(lambda v: 'diseases_%d' %v, range(len(diseases))
)))
这将给我们:
In [548]: dc
Out[548]:
disease medicine disease_header
0 acne green tea diseases_0
1 hypertension fried tomatoes diseases_1
2 cancer meditation diseases_2
3 lupus meditation diseases_3
最后,我们可以转动:
In [547]: dc.pivot(columns='disease_header', index='medicine', values='disease').reset_index()
Out[547]:
disease_header medicine diseases_0 diseases_1 diseases_2 diseases_3
0 fried tomatoes NaN hypertension NaN NaN
1 green tea acne NaN NaN NaN
2 meditation NaN NaN cancer lupus