我在Python中使用pymc3
实现了Bayesian Probabilistic Matrix Factorization算法。我还实现了它的前驱,概率矩阵分解(PMF)。 See my previous question用于引用此处使用的数据。
我在使用NUTS采样器绘制MCMC样本时遇到问题。我使用来自PMF的MAP初始化模型参数,使用高斯随机抽取的超参数在0附近散布。但是,在为采样器设置步骤对象时,我得到PositiveDefiniteError
。我已经验证了PMF的MAP估计是合理的,所以我希望它与超参数初始化的方式有关。这是PMF模型:
import pymc3 as pm
import numpy as np
import pandas as pd
import theano
import scipy as sp
data = pd.read_csv('jester-dense-subset-100x20.csv')
n, m = data.shape
test_size = m / 10
train_size = m - test_size
train = data.copy()
train.ix[:,train_size:] = np.nan # remove test set data
train[train.isnull()] = train.mean().mean() # mean value imputation
train = train.values
test = data.copy()
test.ix[:,:train_size] = np.nan # remove train set data
test = test.values
# Low precision reflects uncertainty; prevents overfitting
alpha_u = alpha_v = 1/np.var(train)
alpha = np.ones((n,m)) * 2 # fixed precision for likelihood function
dim = 10 # dimensionality
# Specify the model.
with pm.Model() as pmf:
pmf_U = pm.MvNormal('U', mu=0, tau=alpha_u * np.eye(dim),
shape=(n, dim), testval=np.random.randn(n, dim)*.01)
pmf_V = pm.MvNormal('V', mu=0, tau=alpha_v * np.eye(dim),
shape=(m, dim), testval=np.random.randn(m, dim)*.01)
pmf_R = pm.Normal('R', mu=theano.tensor.dot(pmf_U, pmf_V.T),
tau=alpha, observed=train)
# Find mode of posterior using optimization
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
这是BPMF:
n, m = data.shape
dim = 10 # dimensionality
beta_0 = 1 # scaling factor for lambdas; unclear on its use
alpha = np.ones((n,m)) * 2 # fixed precision for likelihood function
logging.info('building the BPMF model')
std = .05 # how much noise to use for model initialization
with pm.Model() as bpmf:
# Specify user feature matrix
lambda_u = pm.Wishart(
'lambda_u', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_u = pm.Normal(
'mu_u', mu=0, tau=beta_0 * lambda_u, shape=dim,
testval=np.random.randn(dim) * std)
U = pm.MvNormal(
'U', mu=mu_u, tau=lambda_u, shape=(n, dim),
testval=np.random.randn(n, dim) * std)
# Specify item feature matrix
lambda_v = pm.Wishart(
'lambda_v', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_v = pm.Normal(
'mu_v', mu=0, tau=beta_0 * lambda_v, shape=dim,
testval=np.random.randn(dim) * std)
V = pm.MvNormal(
'V', mu=mu_v, tau=lambda_v, shape=(m, dim),
testval=np.random.randn(m, dim) * std)
# Specify rating likelihood function
R = pm.Normal(
'R', mu=theano.tensor.dot(U, V.T), tau=alpha,
observed=train)
# `start` is the start dictionary obtained from running find_MAP for PMF.
for key in bpmf.test_point:
if key not in start:
start[key] = bpmf.test_point[key]
with bpmf:
step = pm.NUTS(scaling=start)
在最后一行,我收到以下错误:
PositiveDefiniteError: Scaling is not positive definite. Simple check failed. Diagonal contains negatives. Check indexes [ 0 2 ... 2206 2207 ]
据我所知,我不能将find_MAP
用于具有BPMF等超级驱动程序的模型。这就是为什么我尝试使用PMF的MAP值进行初始化,PMF使用U和V上的参数的点估计而不是参数化的超级驱动程序。
答案 0 :(得分:4)
不幸的是,Wishart分发是无效的。我最近在此处添加了一条警告:https://github.com/pymc-devs/pymc3/commit/642f63973ec9f807fb6e55a0fc4b31bdfa1f261e
请参阅此处,了解有关此棘手发布的更多讨论:https://github.com/pymc-devs/pymc3/issues/538
您可以通过修复协方差矩阵来确认这是源。如果是这种情况,我会尝试使用JKL先前分发:https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/LKJ_correlation.py