计算GPS数据的距离[经度和纬度]

时间:2015-04-14 11:02:56

标签: python pandas

我是pandas datamining的新手。我有GPS数据集,包括时间戳,经度和纬度值。我的数据集看起来像this

In [3]:
import pandas as pd
import numpy as np
df = pd.read_csv('D:GPS.csv', index_col=None)
df
Out[3]:
    time                mLongitude  mLongitude
0   2014-06-30 00:00:00 94.500000   126.998428
1   2014-06-30 00:00:00 94.500000   126.998428
2   2014-06-30 00:00:00 94.500000   126.998428
3   2014-06-30 00:00:00 94.500000   126.998428
4   2014-06-30 00:00:00 94.500000   126.998428
5   2014-06-30 00:00:00 94.500000   126.998428
6   2014-06-30 00:00:00 94.500000   126.998428
7   2014-06-30 00:00:00 94.500000   126.998428
8   2014-06-30 00:00:00 94.500000   126.998428
9   2014-06-30 00:00:00 94.500000   126.998428
10  2014-06-30 00:00:00 94.500000   126.998428
11  2014-06-30 00:00:00 94.500000   126.998428
12  2014-06-30 00:00:00 94.500000   126.998428
13  2014-06-30 00:00:00 94.500000   126.998428
14  2014-06-30 00:00:00 94.500000   126.998428
15  2014-06-30 00:00:00 94.500000   126.998428
  ...   ... ... ...
9467    2014-08-02 00:00:00 44.299999   126.902259
9468    2014-08-02 00:00:00 44.299999   126.902259
9469    2014-08-02 00:00:00 44.299999   126.902259
9470    2014-08-02 00:00:00 44.299999   126.902259
9471    2014-08-02 00:00:00 44.299999   126.902259
9472    2014-08-02 00:00:00 44.299999   126.902259

在这里,我想计算每一天的行驶距离。然后输出的例子是这样的:

 time        distance (meter)
2014-06-30     1000 
2014-07-01     500
....           ...
2014-08-02     1500

1 个答案:

答案 0 :(得分:3)

以下内容改编自我的answer

In [133]:

import math
​
df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(np.radians(df['mLatitude']) - math.radians(37.2175900)/2)**2 + math.cos(math.radians(37.2175900)) * np.cos(np.radians(df['mLatitude']) * np.sin(np.radians(df['mLongitude']) - math.radians(-56.7213600)/2)**2)))
df
Out[133]:
            time  mLongitude   mLatitude      distance
index                                                 
0     2014-06-30   94.500000  126.998428  16032.604625
1     2014-06-30   94.500000  126.998428  16032.604625
2     2014-06-30   94.500000  126.998428  16032.604625
3     2014-06-30   94.500000  126.998428  16032.604625
4     2014-06-30   94.500000  126.998428  16032.604625
5     2014-06-30   94.500000  126.998428  16032.604625
6     2014-06-30   94.500000  126.998428  16032.604625
7     2014-06-30   94.500000  126.998428  16032.604625
8     2014-06-30   94.500000  126.998428  16032.604625
9     2014-06-30   94.500000  126.998428  16032.604625
10    2014-06-30   94.500000  126.998428  16032.604625
11    2014-06-30   94.500000  126.998428  16032.604625
12    2014-06-30   94.500000  126.998428  16032.604625
13    2014-06-30   94.500000  126.998428  16032.604625
14    2014-06-30   94.500000  126.998428  16032.604625
15    2014-06-30   94.500000  126.998428  16032.604625
9467  2014-08-02   44.299999  126.902259  10728.740464
9468  2014-08-02   44.299999  126.902259  10728.740464
9469  2014-08-02   44.299999  126.902259  10728.740464
9470  2014-08-02   44.299999  126.902259  10728.740464
9471  2014-08-02   44.299999  126.902259  10728.740464
9472  2014-08-02   44.299999  126.902259  10728.740464
In [137]:

df.set_index('time').resample('D', how='mean')
Out[137]:
            mLongitude   mLatitude      distance
time                                            
2014-06-30   94.500000  126.998428  16032.604625
2014-08-02   44.299999  126.902259  10728.740464

目前还不清楚您的时间是否已经过了日期时间,但如果不是,您可以将其转换为df['time'] = pd.to_datetime(df['time']),我还会重新标记列,因为您有2 mLongitude,我&#39 ; m假设第二个应该是纬度