我进行了两次安装:
brew install numpy
(和scipy)--with-openblas
我克隆了两个方便的脚本,用于在多线程环境中验证这些库:
git clone https://gist.github.com/3842524.git
然后,对于每个安装,我正在执行show_config
:
python -c "import scipy as np; np.show_config()"
这对于安装1来说非常好:
lapack_opt_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = f77
blas_opt_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = f77
openblas_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = f77
blas_mkl_info:
NOT AVAILABLE
但安装2事情并不那么光明:
lapack_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3']
define_macros = [('NO_ATLAS_INFO', 3)]
blas_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3', '- I/System/Library/Frameworks/vecLib.framework/Headers']
define_macros = [('NO_ATLAS_INFO', 3)]
所以当我无法正确链接OpenBLAS时。但现在好了,这里是性能结果。所有测试均在iMac,Yosemite,i7-4790K,4核,超线程上进行。
首次安装OpenBLAS:
numpy的:
OMP_NUM_THREADS=1 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.126578998566 sec
OMP_NUM_THREADS=2 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.0640147686005 sec
OMP_NUM_THREADS=4 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.0360922336578 sec
OMP_NUM_THREADS=8 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.0364527702332 sec
SciPy的:
OMP_NUM_THREADS=1 python test_scipy.py
cholesky: 0.0276656150818 sec
svd: 0.732437372208 sec
OMP_NUM_THREADS=2 python test_scipy.py
cholesky: 0.0182101726532 sec
svd: 0.441690778732 sec
OMP_NUM_THREADS=4 python test_scipy.py
cholesky: 0.0130400180817 sec
svd: 0.316107988358 sec
OMP_NUM_THREADS=8 python test_scipy.py
cholesky: 0.012854385376 sec
svd: 0.315939807892 sec
没有OpenBLAS的第二次安装:
numpy的:
OMP_NUM_THREADS=1 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0371072292328 sec
OMP_NUM_THREADS=2 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0215149879456 sec
OMP_NUM_THREADS=4 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0146862030029 sec
OMP_NUM_THREADS=8 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0141334056854 sec
SciPy的:
OMP_NUM_THREADS=1 python test_scipy.py
cholesky: 0.0109382152557 sec
svd: 0.32529540062 sec
OMP_NUM_THREADS=2 python test_scipy.py
cholesky: 0.00988121032715 sec
svd: 0.331357002258 sec
OMP_NUM_THREADS=4 python test_scipy.py
cholesky: 0.00916676521301 sec
svd: 0.318637990952 sec
OMP_NUM_THREADS=8 python test_scipy.py
cholesky: 0.00931282043457 sec
svd: 0.324427986145 sec
令我惊讶的是,第二种情况比第一种情况要快。在scipy的情况下,添加更多内核后性能没有增加,但即使一个内核比OpenBLAS中的4个内核更快。
有谁知道为什么会这样?
答案 0 :(得分:8)
有两个明显的差异可能导致差异:
您正在比较numpy的两个不同版本。使用Homebrew安装的OpenBLAS链接版本是1.9.1,而您从源代码构建的版本是1.10.0.dev0 + 3c5409e。
虽然新版本没有与OpenBLAS相关联,但它与Apple的Accelerate Framework链接,这是一个不同的优化BLAS实现。
您的测试脚本仍然为第二种情况报告slow blas
的原因是由于与最新版本的numpy不兼容。您正在使用的脚本测试numpy是否通过checking for the presence of numpy.core._dotblas
链接到优化的BLAS库:
try:
import numpy.core._dotblas
print 'FAST BLAS'
except ImportError:
print 'slow blas'
在numpy的旧版本中,如果找到优化的BLAS库,则只能在安装过程中编译此C模块。但是,_dotblas
has been removed altogether in development versions > 1.10.0(如this previous SO question中所述),因此脚本将始终为这些版本报告slow blas
。
我已经编写了numpy测试脚本的更新版本,该脚本可以正确报告最新版本的BLAS链接; you can find it here