我有这种记忆技术来减少获得Fibonacci序列号的调用次数:
def fastFib(n, memo):
global numCalls
numCalls += 1
print 'fib1 called with', n
if not n in memo:
memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)
return memo[n]
def fib1(n):
memo = {0:1, 1:1}
return fastFib(n, memo)
numCalls = 0
n = 6
res = fib1(n)
print 'fib of', n,'=', res, 'numCalls = ', numCalls
但我被困在这里:memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)
和memo = {0:1, 1:1}
。每次我想得到一个数字的时候,它是如何完全减少通话次数的呢?
答案 0 :(得分:4)
您应该始终返回memo[n]
,不仅仅是在不可靠的查找(fastFib()
的最后一行):
def fastFib(n, memo):
global numCalls
numCalls += 1
print 'fib1 called with', n
if not n in memo:
memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)
#this should be outside of the if clause:
return memo[n] #<<<<<< THIS
通过这种方式减少了调用次数,因为对于n
的每个值,您实际上最多只能计算和递归一次,将递归调用的数量限制为O(n)
(2n
的上限。 1}} invokations),而不是一遍又一遍地重新计算相同的值,有效地进行指数的递归调用。
fib(5)的一个小例子,其中每一行都是递归调用:
天真的方法:
f(5) =
f(4) + f(3) =
f(3) + f(2) + f(3) =
f(2) + f(1) + f(2) + f(3) =
f(1) + f(0) + f(1) + f(2) + f(3) = (base clauses) =
1 + f(0) + f(1) + f(2) + f(3) =
2 + f(1) + f(2) + f(3) =
3 + f(2) + f(3) =
3 + f(1) + f(0) + f(3) =
3 + 1 + f(0) + f(3) =
5 + f(3) =
5 + f(2) + f(1) =
5 + f(1) + f(0) + f(1) =
5 + 1 + f(0) + f(1) =
5 + 2 + f(1) =
8
现在,如果你使用memoization,你不需要重新计算很多东西(比如计算3次的f(2)
),你得到:
f(5) =
f(4) + f(3) =
f(3) + f(2) + f(3) =
f(2) + f(1) + f(2) + f(3) =
f(1) + f(0) + f(1) + f(2) + f(3) = (base clauses) =
1 + f(0) + f(1) + f(2) + f(3) =
2 + f(1) + f(2) + f(3) =
3 + f(2) + f(3) = {f(2) is already known}
3 + 2 + f(3) = {f(3) is already known}
5 + 3 =
8
如您所见,第二个比第一个短,数字越大(n
),这个差异越大。
答案 1 :(得分:3)
可以使用Python 3.2 +
中的 functools 库完成import functools
@functools.lru_cache(maxsize=None) #128 by default
def fib(num):
if num < 2:
return num
else:
return fib(num-1) + fib(num-2)
答案 2 :(得分:0)
以下方法使用最小的缓存大小(2个条目),同时提供O(n)渐近性:
from itertools import islice
def fibs():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
def fib(n):
return next(islice(fibs(), n-1, None))
此实现来自斐波纳契的经典核心递归定义(la Haskell的https://wiki.haskell.org/The_Fibonacci_sequence#Canonical_zipWith_implementation)。
有关更直接(递归)的翻译,请参见https://gist.github.com/3noch/7969f416d403ba3a54a788b113c204ce。
答案 3 :(得分:0)
它可以在单个类或函数中完成,如下所示
class Solution:
def __init__(self):
# initialize memo
self.memo = {}
def fib(self, n: int) -> int:
# base case
if n < 2:
return n
# check if fib(n) is already in memo - f(n) was calculated before
if n in self.memo:
return self.memo[n]
else:
f = self.fib(n - 1) + self.fib(n - 2)
# store the value of fib(n) when calculated
self.memo[n] = f
return f