我目前正在编写一些针对英特尔即将推出的AVX-512 SIMD指令的代码,该指令支持512位操作。
现在假设有一个由16个SIMD寄存器表示的矩阵,每个寄存器包含16个32位整数(对应一行),如何用纯SIMD指令转置矩阵?
已经有了分别用SSE和AVX2转换4x4或8x8矩阵的解决方案。但我无法弄清楚如何用AVX-512将它扩展到16x16。
有什么想法吗?
答案 0 :(得分:20)
对于使用SIMD的两个操作数指令,您可以显示转置nxn
矩阵所需的操作数为n*log_2(n)
,而使用标量运算时O(n^2)
。2*n*(n-1)
。实际上,稍后我将展示使用标量寄存器的读写操作数是4x4
。下表显示了使用SSE,AVX,AVX512和AVX1024转换8x8
,16x16
,32x32
和n 4(SSE) 8(AVX) 16(AVX512) 32(AVX1024)
SIMD ops 8 24 64 160
SIMD +r/w ops 16 40 96 224
Scalar r/w ops 24 112 480 1984
矩阵与标量运算相比的操作数
n*log_2(n) + 2*n
其中SIMD + r / w ops包括读写操作(n*log_2(n)
)。
可以在permute n 32-bit rows
permute n 64-bit rows
...
permute n simd_width/2-bit rows
操作中完成SIMD转置的原因是算法是:
4x4
例如,对于16x16
,有4行,因此您必须将32位通道4次置换,然后将64位通道置换4次。对于16x16
,您必须置换32位通道,64位通道,128位通道,最后256通道,每次通道16次。
I already showed that 8x8
can be done with 24 operations with AVX。那么问题是如何在64次操作中使用AVX512为interleave 32-bit lanes using
8x _mm512_unpacklo_epi32
8x _mm512_unpackhi_epi32
interleave 64-bit lanes using
8x _mm512_unpacklo_epi64
8x _mm512_unpackhi_epi64
permute 128-bit lanes using
16x _mm512_shuffle_i32x4
permute 256-bit lanes using again
16x _mm512_shuffle_i32x4
执行此操作?一般算法是:
//given __m512i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf;
__m512i t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ta, tb, tc, td, te, tf;
t0 = _mm512_unpacklo_epi32(r0,r1); // 0 16 1 17 4 20 5 21 8 24 9 25 12 28 13 29
t1 = _mm512_unpackhi_epi32(r0,r1); // 2 18 3 19 6 22 7 23 10 26 11 27 14 30 15 31
t2 = _mm512_unpacklo_epi32(r2,r3); // 32 48 33 49 ...
t3 = _mm512_unpackhi_epi32(r2,r3); // 34 50 35 51 ...
t4 = _mm512_unpacklo_epi32(r4,r5); // 64 80 65 81 ...
t5 = _mm512_unpackhi_epi32(r4,r5); // 66 82 67 83 ...
t6 = _mm512_unpacklo_epi32(r6,r7); // 96 112 97 113 ...
t7 = _mm512_unpackhi_epi32(r6,r7); // 98 114 99 115 ...
t8 = _mm512_unpacklo_epi32(r8,r9); // 128 ...
t9 = _mm512_unpackhi_epi32(r8,r9); // 130 ...
ta = _mm512_unpacklo_epi32(ra,rb); // 160 ...
tb = _mm512_unpackhi_epi32(ra,rb); // 162 ...
tc = _mm512_unpacklo_epi32(rc,rd); // 196 ...
td = _mm512_unpackhi_epi32(rc,rd); // 198 ...
te = _mm512_unpacklo_epi32(re,rf); // 228 ...
tf = _mm512_unpackhi_epi32(re,rf); // 230 ...
r0 = _mm512_unpacklo_epi64(t0,t2); // 0 16 32 48 ...
r1 = _mm512_unpackhi_epi64(t0,t2); // 1 17 33 49 ...
r2 = _mm512_unpacklo_epi64(t1,t3); // 2 18 34 49 ...
r3 = _mm512_unpackhi_epi64(t1,t3); // 3 19 35 51 ...
r4 = _mm512_unpacklo_epi64(t4,t6); // 64 80 96 112 ...
r5 = _mm512_unpackhi_epi64(t4,t6); // 65 81 97 114 ...
r6 = _mm512_unpacklo_epi64(t5,t7); // 66 82 98 113 ...
r7 = _mm512_unpackhi_epi64(t5,t7); // 67 83 99 115 ...
r8 = _mm512_unpacklo_epi64(t8,ta); // 128 144 160 176 ...
r9 = _mm512_unpackhi_epi64(t8,ta); // 129 145 161 178 ...
ra = _mm512_unpacklo_epi64(t9,tb); // 130 146 162 177 ...
rb = _mm512_unpackhi_epi64(t9,tb); // 131 147 163 179 ...
rc = _mm512_unpacklo_epi64(tc,te); // 192 208 228 240 ...
rd = _mm512_unpackhi_epi64(tc,te); // 193 209 229 241 ...
re = _mm512_unpacklo_epi64(td,tf); // 194 210 230 242 ...
rf = _mm512_unpackhi_epi64(td,tf); // 195 211 231 243 ...
t0 = _mm512_shuffle_i32x4(r0, r4, 0x88); // 0 16 32 48 8 24 40 56 64 80 96 112 ...
t1 = _mm512_shuffle_i32x4(r1, r5, 0x88); // 1 17 33 49 ...
t2 = _mm512_shuffle_i32x4(r2, r6, 0x88); // 2 18 34 50 ...
t3 = _mm512_shuffle_i32x4(r3, r7, 0x88); // 3 19 35 51 ...
t4 = _mm512_shuffle_i32x4(r0, r4, 0xdd); // 4 20 36 52 ...
t5 = _mm512_shuffle_i32x4(r1, r5, 0xdd); // 5 21 37 53 ...
t6 = _mm512_shuffle_i32x4(r2, r6, 0xdd); // 6 22 38 54 ...
t7 = _mm512_shuffle_i32x4(r3, r7, 0xdd); // 7 23 39 55 ...
t8 = _mm512_shuffle_i32x4(r8, rc, 0x88); // 128 144 160 176 ...
t9 = _mm512_shuffle_i32x4(r9, rd, 0x88); // 129 145 161 177 ...
ta = _mm512_shuffle_i32x4(ra, re, 0x88); // 130 146 162 178 ...
tb = _mm512_shuffle_i32x4(rb, rf, 0x88); // 131 147 163 179 ...
tc = _mm512_shuffle_i32x4(r8, rc, 0xdd); // 132 148 164 180 ...
td = _mm512_shuffle_i32x4(r9, rd, 0xdd); // 133 149 165 181 ...
te = _mm512_shuffle_i32x4(ra, re, 0xdd); // 134 150 166 182 ...
tf = _mm512_shuffle_i32x4(rb, rf, 0xdd); // 135 151 167 183 ...
r0 = _mm512_shuffle_i32x4(t0, t8, 0x88); // 0 16 32 48 64 80 96 112 ... 240
r1 = _mm512_shuffle_i32x4(t1, t9, 0x88); // 1 17 33 49 66 81 97 113 ... 241
r2 = _mm512_shuffle_i32x4(t2, ta, 0x88); // 2 18 34 50 67 82 98 114 ... 242
r3 = _mm512_shuffle_i32x4(t3, tb, 0x88); // 3 19 35 51 68 83 99 115 ... 243
r4 = _mm512_shuffle_i32x4(t4, tc, 0x88); // 4 ...
r5 = _mm512_shuffle_i32x4(t5, td, 0x88); // 5 ...
r6 = _mm512_shuffle_i32x4(t6, te, 0x88); // 6 ...
r7 = _mm512_shuffle_i32x4(t7, tf, 0x88); // 7 ...
r8 = _mm512_shuffle_i32x4(t0, t8, 0xdd); // 8 ...
r9 = _mm512_shuffle_i32x4(t1, t9, 0xdd); // 9 ...
ra = _mm512_shuffle_i32x4(t2, ta, 0xdd); // 10 ...
rb = _mm512_shuffle_i32x4(t3, tb, 0xdd); // 11 ...
rc = _mm512_shuffle_i32x4(t4, tc, 0xdd); // 12 ...
rd = _mm512_shuffle_i32x4(t5, td, 0xdd); // 13 ...
re = _mm512_shuffle_i32x4(t6, te, 0xdd); // 14 ...
rf = _mm512_shuffle_i32x4(t7, tf, 0xdd); // 15 31 47 63 79 96 111 127 ... 255
以下是执行此操作的未经测试的代码
_mm512_shufflei32x4
我通过查看使用4x4
转换_mm_shuffle_ps
矩阵来获得使用_MM_TRANSPOSE4_PS
的想法(这是MSVC在__m128 tmp0 ,tmp1, tmp2, tmp3;
tmp0 = _mm_shuffle_ps(row0, row1, 0x88); // 0 2 4 6
tmp1 = _mm_shuffle_ps(row0, row1, 0xdd); // 1 3 5 7
tmp2 = _mm_shuffle_ps(row2, row3, 0x88); // 8 a c e
tmp3 = _mm_shuffle_ps(row2, row3, 0xdd); // 9 b d f
row0 = _mm_shuffle_ps(tmp0, tmp2, 0x88); // 0 4 8 c
row1 = _mm_shuffle_ps(tmp1, tmp3, 0x88); // 1 5 9 d
row2 = _mm_shuffle_ps(tmp0, tmp2, 0xdd); // 2 6 a e
row3 = _mm_shuffle_ps(tmp1, tmp3, 0xdd); // 3 7 b f
但不是GCC和ICC中使用的)。
_mm512_shuffle_i32x4
同样的想法适用于#define SIZE 16
void transpose(int a[SIZE][SIZE]) { // function to transpose matrix
// define a macro to swap two array elements:
#define swapd(x,y) {temp=x; x=y; y=temp;}
int r, c; int temp;
for (r = 1; r < SIZE; r++) {
for (c = 0; c < r; c++) {
swapd(a[r][c], a[c][r]);
}
}
}
,但现在通道是128位而不是32位,有16行而不是4行。
最后,为了与标量操作进行比较,我修改了Agner Fog&#39; s optimizing C++ manual
中的例9.5an*(n-1)/2
这会mov r8d, DWORD PTR [rax+68]
mov r9d, DWORD PTR [rdx+68]
mov DWORD PTR [rax+68], r9d
mov DWORD PTR [rdx+68], r8d
交换(因为对角线不需要交换)。 16x16的装配交换看起来像
2*n*(n-1)
因此使用标量寄存器的读/写操作数为{{1}}。
答案 1 :(得分:4)
我最近获得了拥有AVX512的Xeon Phi Knights Landing硬件。 具体来说,我使用的硬件是Intel(R)Xeon Phi(TM)CPU 7250 @ 1.40GHz(http://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core)。这不是辅助卡。 Xeon Phi是主要的计算机。
我测试了AVX512收集说明,与我的方法https://stackoverflow.com/a/29587984/2542702进行了比较,看起来收集速度仍然较慢。我在该答案中的代码首次尝试没有错误。
我在大约3个月内没有编写内在函数,或者在这段时间内没有考虑优化,所以也许我的测试不够健壮。肯定会有一些开销,但我仍然相信结果清楚地表明在这种情况下聚集速度较慢。
我只测试了ICC 17.0.0,因为当前安装的操作系统只有CentOS 7.2,Linux Kernel 3.10和GCC 4.8.5,而GCC 4.8不支持AVX512。我可以说服HPC小组进行升级工作。
我查看了程序集以确保它生成了AVX512指令,但我没有仔细分析它。
//icc -O3 -xCOMMON-AVX512 tran.c -fopenmp
#include <stdio.h>
#include <x86intrin.h>
#include <omp.h>
void tran(int* mat, int* matT) {
int i,j;
__m512i t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ta, tb, tc, td, te, tf;
__m512i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf;
r0 = _mm512_load_epi32(&mat[ 0*16]);
r1 = _mm512_load_epi32(&mat[ 1*16]);
r2 = _mm512_load_epi32(&mat[ 2*16]);
r3 = _mm512_load_epi32(&mat[ 3*16]);
r4 = _mm512_load_epi32(&mat[ 4*16]);
r5 = _mm512_load_epi32(&mat[ 5*16]);
r6 = _mm512_load_epi32(&mat[ 6*16]);
r7 = _mm512_load_epi32(&mat[ 7*16]);
r8 = _mm512_load_epi32(&mat[ 8*16]);
r9 = _mm512_load_epi32(&mat[ 9*16]);
ra = _mm512_load_epi32(&mat[10*16]);
rb = _mm512_load_epi32(&mat[11*16]);
rc = _mm512_load_epi32(&mat[12*16]);
rd = _mm512_load_epi32(&mat[13*16]);
re = _mm512_load_epi32(&mat[14*16]);
rf = _mm512_load_epi32(&mat[15*16]);
t0 = _mm512_unpacklo_epi32(r0,r1); // 0 16 1 17 4 20 5 21 8 24 9 25 12 28 13 29
t1 = _mm512_unpackhi_epi32(r0,r1); // 2 18 3 19 6 22 7 23 10 26 11 27 14 30 15 31
t2 = _mm512_unpacklo_epi32(r2,r3); // 32 48 33 49 ...
t3 = _mm512_unpackhi_epi32(r2,r3); // 34 50 35 51 ...
t4 = _mm512_unpacklo_epi32(r4,r5); // 64 80 65 81 ...
t5 = _mm512_unpackhi_epi32(r4,r5); // 66 82 67 83 ...
t6 = _mm512_unpacklo_epi32(r6,r7); // 96 112 97 113 ...
t7 = _mm512_unpackhi_epi32(r6,r7); // 98 114 99 115 ...
t8 = _mm512_unpacklo_epi32(r8,r9); // 128 ...
t9 = _mm512_unpackhi_epi32(r8,r9); // 130 ...
ta = _mm512_unpacklo_epi32(ra,rb); // 160 ...
tb = _mm512_unpackhi_epi32(ra,rb); // 162 ...
tc = _mm512_unpacklo_epi32(rc,rd); // 196 ...
td = _mm512_unpackhi_epi32(rc,rd); // 198 ...
te = _mm512_unpacklo_epi32(re,rf); // 228 ...
tf = _mm512_unpackhi_epi32(re,rf); // 230 ...
r0 = _mm512_unpacklo_epi64(t0,t2); // 0 16 32 48 ...
r1 = _mm512_unpackhi_epi64(t0,t2); // 1 17 33 49 ...
r2 = _mm512_unpacklo_epi64(t1,t3); // 2 18 34 49 ...
r3 = _mm512_unpackhi_epi64(t1,t3); // 3 19 35 51 ...
r4 = _mm512_unpacklo_epi64(t4,t6); // 64 80 96 112 ...
r5 = _mm512_unpackhi_epi64(t4,t6); // 65 81 97 114 ...
r6 = _mm512_unpacklo_epi64(t5,t7); // 66 82 98 113 ...
r7 = _mm512_unpackhi_epi64(t5,t7); // 67 83 99 115 ...
r8 = _mm512_unpacklo_epi64(t8,ta); // 128 144 160 176 ...
r9 = _mm512_unpackhi_epi64(t8,ta); // 129 145 161 178 ...
ra = _mm512_unpacklo_epi64(t9,tb); // 130 146 162 177 ...
rb = _mm512_unpackhi_epi64(t9,tb); // 131 147 163 179 ...
rc = _mm512_unpacklo_epi64(tc,te); // 192 208 228 240 ...
rd = _mm512_unpackhi_epi64(tc,te); // 193 209 229 241 ...
re = _mm512_unpacklo_epi64(td,tf); // 194 210 230 242 ...
rf = _mm512_unpackhi_epi64(td,tf); // 195 211 231 243 ...
t0 = _mm512_shuffle_i32x4(r0, r4, 0x88); // 0 16 32 48 8 24 40 56 64 80 96 112 ...
t1 = _mm512_shuffle_i32x4(r1, r5, 0x88); // 1 17 33 49 ...
t2 = _mm512_shuffle_i32x4(r2, r6, 0x88); // 2 18 34 50 ...
t3 = _mm512_shuffle_i32x4(r3, r7, 0x88); // 3 19 35 51 ...
t4 = _mm512_shuffle_i32x4(r0, r4, 0xdd); // 4 20 36 52 ...
t5 = _mm512_shuffle_i32x4(r1, r5, 0xdd); // 5 21 37 53 ...
t6 = _mm512_shuffle_i32x4(r2, r6, 0xdd); // 6 22 38 54 ...
t7 = _mm512_shuffle_i32x4(r3, r7, 0xdd); // 7 23 39 55 ...
t8 = _mm512_shuffle_i32x4(r8, rc, 0x88); // 128 144 160 176 ...
t9 = _mm512_shuffle_i32x4(r9, rd, 0x88); // 129 145 161 177 ...
ta = _mm512_shuffle_i32x4(ra, re, 0x88); // 130 146 162 178 ...
tb = _mm512_shuffle_i32x4(rb, rf, 0x88); // 131 147 163 179 ...
tc = _mm512_shuffle_i32x4(r8, rc, 0xdd); // 132 148 164 180 ...
td = _mm512_shuffle_i32x4(r9, rd, 0xdd); // 133 149 165 181 ...
te = _mm512_shuffle_i32x4(ra, re, 0xdd); // 134 150 166 182 ...
tf = _mm512_shuffle_i32x4(rb, rf, 0xdd); // 135 151 167 183 ...
r0 = _mm512_shuffle_i32x4(t0, t8, 0x88); // 0 16 32 48 64 80 96 112 ... 240
r1 = _mm512_shuffle_i32x4(t1, t9, 0x88); // 1 17 33 49 66 81 97 113 ... 241
r2 = _mm512_shuffle_i32x4(t2, ta, 0x88); // 2 18 34 50 67 82 98 114 ... 242
r3 = _mm512_shuffle_i32x4(t3, tb, 0x88); // 3 19 35 51 68 83 99 115 ... 243
r4 = _mm512_shuffle_i32x4(t4, tc, 0x88); // 4 ...
r5 = _mm512_shuffle_i32x4(t5, td, 0x88); // 5 ...
r6 = _mm512_shuffle_i32x4(t6, te, 0x88); // 6 ...
r7 = _mm512_shuffle_i32x4(t7, tf, 0x88); // 7 ...
r8 = _mm512_shuffle_i32x4(t0, t8, 0xdd); // 8 ...
r9 = _mm512_shuffle_i32x4(t1, t9, 0xdd); // 9 ...
ra = _mm512_shuffle_i32x4(t2, ta, 0xdd); // 10 ...
rb = _mm512_shuffle_i32x4(t3, tb, 0xdd); // 11 ...
rc = _mm512_shuffle_i32x4(t4, tc, 0xdd); // 12 ...
rd = _mm512_shuffle_i32x4(t5, td, 0xdd); // 13 ...
re = _mm512_shuffle_i32x4(t6, te, 0xdd); // 14 ...
rf = _mm512_shuffle_i32x4(t7, tf, 0xdd); // 15 31 47 63 79 96 111 127 ... 255
_mm512_store_epi32(&matT[ 0*16], r0);
_mm512_store_epi32(&matT[ 1*16], r1);
_mm512_store_epi32(&matT[ 2*16], r2);
_mm512_store_epi32(&matT[ 3*16], r3);
_mm512_store_epi32(&matT[ 4*16], r4);
_mm512_store_epi32(&matT[ 5*16], r5);
_mm512_store_epi32(&matT[ 6*16], r6);
_mm512_store_epi32(&matT[ 7*16], r7);
_mm512_store_epi32(&matT[ 8*16], r8);
_mm512_store_epi32(&matT[ 9*16], r9);
_mm512_store_epi32(&matT[10*16], ra);
_mm512_store_epi32(&matT[11*16], rb);
_mm512_store_epi32(&matT[12*16], rc);
_mm512_store_epi32(&matT[13*16], rd);
_mm512_store_epi32(&matT[14*16], re);
_mm512_store_epi32(&matT[15*16], rf);
}
void gather(int *mat, int *matT) {
int i,j;
int index[16] __attribute__((aligned(64)));
__m512i vindex;
for(i=0; i<16; i++) index[i] = 16*i;
for(i=0; i<256; i++) mat[i] = i;
vindex = _mm512_load_epi32(index);
for(i=0; i<16; i++)
_mm512_store_epi32(&matT[16*i], _mm512_i32gather_epi32(vindex, &mat[i], 4));
}
int verify(int *mat) {
int i,j;
int error = 0;
for(i=0; i<16; i++) {
for(j=0; j<16; j++) {
if(mat[j*16+i] != i*16+j) error++;
}
}
return error;
}
void print_mat(int *mat) {
int i,j;
for(i=0; i<16; i++) {
for(j=0; j<16; j++) printf("%2X ", mat[i*16+j]);
puts("");
}
puts("");
}
int main(void) {
int i,j, rep;
int mat[256] __attribute__((aligned(64)));
int matT[256] __attribute__((aligned(64)));
double dtime;
rep = 10000000;
for(i=0; i<256; i++) mat[i] = i;
print_mat(mat);
gather(mat, matT);
for(i=0; i<256; i++) mat[i] = i;
dtime = -omp_get_wtime();
for(i=0; i<rep; i++) gather(mat, matT);
dtime += omp_get_wtime();
printf("errors %d\n", verify(matT));
printf("dtime %f\n", dtime);
print_mat(matT);
tran(mat,matT);
dtime = -omp_get_wtime();
for(i=0; i<rep; i++) tran(mat, matT);
dtime += omp_get_wtime();
printf("errors %d\n", verify(matT));
printf("dtime %f\n", dtime);
print_mat(matT);
}
在这种情况下,gather
函数需要1.5秒,tran
函数需要1.15秒。如果有人发现错误或对我的测试有任何建议,请告诉我。我刚开始获得AVX512和Knights Landing的经验。
我试图删除一些开销并成功但是聚集仍然看起来更慢
#include <stdio.h>
#include <x86intrin.h>
#include <omp.h>
void tran(int* mat, int* matT, int rep) {
int i;
__m512i t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ta, tb, tc, td, te, tf;
__m512i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf;
for(i=0; i<rep; i++) {
r0 = _mm512_load_epi32(&mat[ 0*16]);
r1 = _mm512_load_epi32(&mat[ 1*16]);
r2 = _mm512_load_epi32(&mat[ 2*16]);
r3 = _mm512_load_epi32(&mat[ 3*16]);
r4 = _mm512_load_epi32(&mat[ 4*16]);
r5 = _mm512_load_epi32(&mat[ 5*16]);
r6 = _mm512_load_epi32(&mat[ 6*16]);
r7 = _mm512_load_epi32(&mat[ 7*16]);
r8 = _mm512_load_epi32(&mat[ 8*16]);
r9 = _mm512_load_epi32(&mat[ 9*16]);
ra = _mm512_load_epi32(&mat[10*16]);
rb = _mm512_load_epi32(&mat[11*16]);
rc = _mm512_load_epi32(&mat[12*16]);
rd = _mm512_load_epi32(&mat[13*16]);
re = _mm512_load_epi32(&mat[14*16]);
rf = _mm512_load_epi32(&mat[15*16]);
t0 = _mm512_unpacklo_epi32(r0,r1); // 0 16 1 17 4 20 5 21 8 24 9 25 12 28 13 29
t1 = _mm512_unpackhi_epi32(r0,r1); // 2 18 3 19 6 22 7 23 10 26 11 27 14 30 15 31
t2 = _mm512_unpacklo_epi32(r2,r3); // 32 48 33 49 ...
t3 = _mm512_unpackhi_epi32(r2,r3); // 34 50 35 51 ...
t4 = _mm512_unpacklo_epi32(r4,r5); // 64 80 65 81 ...
t5 = _mm512_unpackhi_epi32(r4,r5); // 66 82 67 83 ...
t6 = _mm512_unpacklo_epi32(r6,r7); // 96 112 97 113 ...
t7 = _mm512_unpackhi_epi32(r6,r7); // 98 114 99 115 ...
t8 = _mm512_unpacklo_epi32(r8,r9); // 128 ...
t9 = _mm512_unpackhi_epi32(r8,r9); // 130 ...
ta = _mm512_unpacklo_epi32(ra,rb); // 160 ...
tb = _mm512_unpackhi_epi32(ra,rb); // 162 ...
tc = _mm512_unpacklo_epi32(rc,rd); // 196 ...
td = _mm512_unpackhi_epi32(rc,rd); // 198 ...
te = _mm512_unpacklo_epi32(re,rf); // 228 ...
tf = _mm512_unpackhi_epi32(re,rf); // 230 ...
r0 = _mm512_unpacklo_epi64(t0,t2); // 0 16 32 48 ...
r1 = _mm512_unpackhi_epi64(t0,t2); // 1 17 33 49 ...
r2 = _mm512_unpacklo_epi64(t1,t3); // 2 18 34 49 ...
r3 = _mm512_unpackhi_epi64(t1,t3); // 3 19 35 51 ...
r4 = _mm512_unpacklo_epi64(t4,t6); // 64 80 96 112 ...
r5 = _mm512_unpackhi_epi64(t4,t6); // 65 81 97 114 ...
r6 = _mm512_unpacklo_epi64(t5,t7); // 66 82 98 113 ...
r7 = _mm512_unpackhi_epi64(t5,t7); // 67 83 99 115 ...
r8 = _mm512_unpacklo_epi64(t8,ta); // 128 144 160 176 ...
r9 = _mm512_unpackhi_epi64(t8,ta); // 129 145 161 178 ...
ra = _mm512_unpacklo_epi64(t9,tb); // 130 146 162 177 ...
rb = _mm512_unpackhi_epi64(t9,tb); // 131 147 163 179 ...
rc = _mm512_unpacklo_epi64(tc,te); // 192 208 228 240 ...
rd = _mm512_unpackhi_epi64(tc,te); // 193 209 229 241 ...
re = _mm512_unpacklo_epi64(td,tf); // 194 210 230 242 ...
rf = _mm512_unpackhi_epi64(td,tf); // 195 211 231 243 ...
t0 = _mm512_shuffle_i32x4(r0, r4, 0x88); // 0 16 32 48 8 24 40 56 64 80 96 112 ...
t1 = _mm512_shuffle_i32x4(r1, r5, 0x88); // 1 17 33 49 ...
t2 = _mm512_shuffle_i32x4(r2, r6, 0x88); // 2 18 34 50 ...
t3 = _mm512_shuffle_i32x4(r3, r7, 0x88); // 3 19 35 51 ...
t4 = _mm512_shuffle_i32x4(r0, r4, 0xdd); // 4 20 36 52 ...
t5 = _mm512_shuffle_i32x4(r1, r5, 0xdd); // 5 21 37 53 ...
t6 = _mm512_shuffle_i32x4(r2, r6, 0xdd); // 6 22 38 54 ...
t7 = _mm512_shuffle_i32x4(r3, r7, 0xdd); // 7 23 39 55 ...
t8 = _mm512_shuffle_i32x4(r8, rc, 0x88); // 128 144 160 176 ...
t9 = _mm512_shuffle_i32x4(r9, rd, 0x88); // 129 145 161 177 ...
ta = _mm512_shuffle_i32x4(ra, re, 0x88); // 130 146 162 178 ...
tb = _mm512_shuffle_i32x4(rb, rf, 0x88); // 131 147 163 179 ...
tc = _mm512_shuffle_i32x4(r8, rc, 0xdd); // 132 148 164 180 ...
td = _mm512_shuffle_i32x4(r9, rd, 0xdd); // 133 149 165 181 ...
te = _mm512_shuffle_i32x4(ra, re, 0xdd); // 134 150 166 182 ...
tf = _mm512_shuffle_i32x4(rb, rf, 0xdd); // 135 151 167 183 ...
r0 = _mm512_shuffle_i32x4(t0, t8, 0x88); // 0 16 32 48 64 80 96 112 ... 240
r1 = _mm512_shuffle_i32x4(t1, t9, 0x88); // 1 17 33 49 66 81 97 113 ... 241
r2 = _mm512_shuffle_i32x4(t2, ta, 0x88); // 2 18 34 50 67 82 98 114 ... 242
r3 = _mm512_shuffle_i32x4(t3, tb, 0x88); // 3 19 35 51 68 83 99 115 ... 243
r4 = _mm512_shuffle_i32x4(t4, tc, 0x88); // 4 ...
r5 = _mm512_shuffle_i32x4(t5, td, 0x88); // 5 ...
r6 = _mm512_shuffle_i32x4(t6, te, 0x88); // 6 ...
r7 = _mm512_shuffle_i32x4(t7, tf, 0x88); // 7 ...
r8 = _mm512_shuffle_i32x4(t0, t8, 0xdd); // 8 ...
r9 = _mm512_shuffle_i32x4(t1, t9, 0xdd); // 9 ...
ra = _mm512_shuffle_i32x4(t2, ta, 0xdd); // 10 ...
rb = _mm512_shuffle_i32x4(t3, tb, 0xdd); // 11 ...
rc = _mm512_shuffle_i32x4(t4, tc, 0xdd); // 12 ...
rd = _mm512_shuffle_i32x4(t5, td, 0xdd); // 13 ...
re = _mm512_shuffle_i32x4(t6, te, 0xdd); // 14 ...
rf = _mm512_shuffle_i32x4(t7, tf, 0xdd); // 15 31 47 63 79 96 111 127 ... 255
_mm512_store_epi32(&matT[ 0*16], r0);
_mm512_store_epi32(&matT[ 1*16], r1);
_mm512_store_epi32(&matT[ 2*16], r2);
_mm512_store_epi32(&matT[ 3*16], r3);
_mm512_store_epi32(&matT[ 4*16], r4);
_mm512_store_epi32(&matT[ 5*16], r5);
_mm512_store_epi32(&matT[ 6*16], r6);
_mm512_store_epi32(&matT[ 7*16], r7);
_mm512_store_epi32(&matT[ 8*16], r8);
_mm512_store_epi32(&matT[ 9*16], r9);
_mm512_store_epi32(&matT[10*16], ra);
_mm512_store_epi32(&matT[11*16], rb);
_mm512_store_epi32(&matT[12*16], rc);
_mm512_store_epi32(&matT[13*16], rd);
_mm512_store_epi32(&matT[14*16], re);
_mm512_store_epi32(&matT[15*16], rf);
}
}
void gather(int *mat, int *matT, int rep) {
int i,j;
int index[16] __attribute__((aligned(64)));
__m512i vindex;
for(i=0; i<16; i++) index[i] = 16*i;
for(i=0; i<256; i++) mat[i] = i;
vindex = _mm512_load_epi32(index);
for(i=0; i<rep; i++) {
_mm512_store_epi32(&matT[ 0*16], _mm512_i32gather_epi32(vindex, &mat[ 0], 4));
_mm512_store_epi32(&matT[ 1*16], _mm512_i32gather_epi32(vindex, &mat[ 1], 4));
_mm512_store_epi32(&matT[ 2*16], _mm512_i32gather_epi32(vindex, &mat[ 2], 4));
_mm512_store_epi32(&matT[ 3*16], _mm512_i32gather_epi32(vindex, &mat[ 3], 4));
_mm512_store_epi32(&matT[ 4*16], _mm512_i32gather_epi32(vindex, &mat[ 4], 4));
_mm512_store_epi32(&matT[ 5*16], _mm512_i32gather_epi32(vindex, &mat[ 5], 4));
_mm512_store_epi32(&matT[ 6*16], _mm512_i32gather_epi32(vindex, &mat[ 6], 4));
_mm512_store_epi32(&matT[ 7*16], _mm512_i32gather_epi32(vindex, &mat[ 7], 4));
_mm512_store_epi32(&matT[ 8*16], _mm512_i32gather_epi32(vindex, &mat[ 8], 4));
_mm512_store_epi32(&matT[ 9*16], _mm512_i32gather_epi32(vindex, &mat[ 9], 4));
_mm512_store_epi32(&matT[10*16], _mm512_i32gather_epi32(vindex, &mat[10], 4));
_mm512_store_epi32(&matT[11*16], _mm512_i32gather_epi32(vindex, &mat[11], 4));
_mm512_store_epi32(&matT[12*16], _mm512_i32gather_epi32(vindex, &mat[12], 4));
_mm512_store_epi32(&matT[13*16], _mm512_i32gather_epi32(vindex, &mat[13], 4));
_mm512_store_epi32(&matT[14*16], _mm512_i32gather_epi32(vindex, &mat[14], 4));
_mm512_store_epi32(&matT[15*16], _mm512_i32gather_epi32(vindex, &mat[15], 4));
}
}
int verify(int *mat) {
int i,j;
int error = 0;
for(i=0; i<16; i++) {
for(j=0; j<16; j++) {
if(mat[j*16+i] != i*16+j) error++;
}
}
return error;
}
void print_mat(int *mat) {
int i,j;
for(i=0; i<16; i++) {
for(j=0; j<16; j++) printf("%2X ", mat[i*16+j]);
puts("");
}
puts("");
}
int main(void) {
int i,j, rep;
int mat[256] __attribute__((aligned(64)));
int matT[256] __attribute__((aligned(64)));
double dtime;
rep = 10000000;
for(i=0; i<256; i++) mat[i] = i;
print_mat(mat);
gather(mat, matT,1);
for(i=0; i<256; i++) mat[i] = i;
dtime = -omp_get_wtime();
gather(mat, matT, rep);
dtime += omp_get_wtime();
printf("errors %d\n", verify(matT));
printf("dtime %f\n", dtime);
print_mat(matT);
tran(mat,matT,1);
dtime = -omp_get_wtime();
tran(mat, matT, rep);
dtime += omp_get_wtime();
printf("errors %d\n", verify(matT));
printf("dtime %f\n", dtime);
print_mat(matT);
}
gather
函数耗时1.13秒,tran
函数耗时0.8秒。
根据Agner Fog的微架构手册,洗牌和置换说明使用KNL表现不佳。我的原始答案https://stackoverflow.com/a/29587984/2542702中使用的随机和解包指令的倒数吞吐量为2.我设法通过使用vpermq
来改善性能,而倒数吞吐量为1。
另外,我使用vinserti64x4
改进了转置的前1/4(参见下面的tran_new2
)。这是一个时代表。 tran
函数需要0.8秒,tran_new2
函数需要0.46秒。
void tran_new2(int* mat, int* matT, int rep) {
__m512i t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ta, tb, tc, td, te, tf;
__m512i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf;
int mask;
int64_t idx1[8] __attribute__((aligned(64))) = {2, 3, 0, 1, 6, 7, 4, 5};
int64_t idx2[8] __attribute__((aligned(64))) = {1, 0, 3, 2, 5, 4, 7, 6};
int32_t idx3[16] __attribute__((aligned(64))) = {1, 0, 3, 2, 5 ,4 ,7 ,6 ,9 ,8 , 11, 10, 13, 12 ,15, 14};
__m512i vidx1 = _mm512_load_epi64(idx1);
__m512i vidx2 = _mm512_load_epi64(idx2);
__m512i vidx3 = _mm512_load_epi32(idx3);
int i;
for(i=0; i<rep; i++) {
t0 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 0*16+0])), _mm256_load_si256((__m256i*)&mat[ 8*16+0]), 1);
t1 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 1*16+0])), _mm256_load_si256((__m256i*)&mat[ 9*16+0]), 1);
t2 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 2*16+0])), _mm256_load_si256((__m256i*)&mat[10*16+0]), 1);
t3 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 3*16+0])), _mm256_load_si256((__m256i*)&mat[11*16+0]), 1);
t4 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 4*16+0])), _mm256_load_si256((__m256i*)&mat[12*16+0]), 1);
t5 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 5*16+0])), _mm256_load_si256((__m256i*)&mat[13*16+0]), 1);
t6 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 6*16+0])), _mm256_load_si256((__m256i*)&mat[14*16+0]), 1);
t7 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 7*16+0])), _mm256_load_si256((__m256i*)&mat[15*16+0]), 1);
t8 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 0*16+8])), _mm256_load_si256((__m256i*)&mat[ 8*16+8]), 1);
t9 = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 1*16+8])), _mm256_load_si256((__m256i*)&mat[ 9*16+8]), 1);
ta = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 2*16+8])), _mm256_load_si256((__m256i*)&mat[10*16+8]), 1);
tb = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 3*16+8])), _mm256_load_si256((__m256i*)&mat[11*16+8]), 1);
tc = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 4*16+8])), _mm256_load_si256((__m256i*)&mat[12*16+8]), 1);
td = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 5*16+8])), _mm256_load_si256((__m256i*)&mat[13*16+8]), 1);
te = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 6*16+8])), _mm256_load_si256((__m256i*)&mat[14*16+8]), 1);
tf = _mm512_inserti64x4(_mm512_castsi256_si512(_mm256_load_si256((__m256i*)&mat[ 7*16+8])), _mm256_load_si256((__m256i*)&mat[15*16+8]), 1);
mask= 0xcc;
r0 = _mm512_mask_permutexvar_epi64(t0, (__mmask8)mask, vidx1, t4);
r1 = _mm512_mask_permutexvar_epi64(t1, (__mmask8)mask, vidx1, t5);
r2 = _mm512_mask_permutexvar_epi64(t2, (__mmask8)mask, vidx1, t6);
r3 = _mm512_mask_permutexvar_epi64(t3, (__mmask8)mask, vidx1, t7);
r8 = _mm512_mask_permutexvar_epi64(t8, (__mmask8)mask, vidx1, tc);
r9 = _mm512_mask_permutexvar_epi64(t9, (__mmask8)mask, vidx1, td);
ra = _mm512_mask_permutexvar_epi64(ta, (__mmask8)mask, vidx1, te);
rb = _mm512_mask_permutexvar_epi64(tb, (__mmask8)mask, vidx1, tf);
mask= 0x33;
r4 = _mm512_mask_permutexvar_epi64(t4, (__mmask8)mask, vidx1, t0);
r5 = _mm512_mask_permutexvar_epi64(t5, (__mmask8)mask, vidx1, t1);
r6 = _mm512_mask_permutexvar_epi64(t6, (__mmask8)mask, vidx1, t2);
r7 = _mm512_mask_permutexvar_epi64(t7, (__mmask8)mask, vidx1, t3);
rc = _mm512_mask_permutexvar_epi64(tc, (__mmask8)mask, vidx1, t8);
rd = _mm512_mask_permutexvar_epi64(td, (__mmask8)mask, vidx1, t9);
re = _mm512_mask_permutexvar_epi64(te, (__mmask8)mask, vidx1, ta);
rf = _mm512_mask_permutexvar_epi64(tf, (__mmask8)mask, vidx1, tb);
mask = 0xaa;
t0 = _mm512_mask_permutexvar_epi64(r0, (__mmask8)mask, vidx2, r2);
t1 = _mm512_mask_permutexvar_epi64(r1, (__mmask8)mask, vidx2, r3);
t4 = _mm512_mask_permutexvar_epi64(r4, (__mmask8)mask, vidx2, r6);
t5 = _mm512_mask_permutexvar_epi64(r5, (__mmask8)mask, vidx2, r7);
t8 = _mm512_mask_permutexvar_epi64(r8, (__mmask8)mask, vidx2, ra);
t9 = _mm512_mask_permutexvar_epi64(r9, (__mmask8)mask, vidx2, rb);
tc = _mm512_mask_permutexvar_epi64(rc, (__mmask8)mask, vidx2, re);
td = _mm512_mask_permutexvar_epi64(rd, (__mmask8)mask, vidx2, rf);
mask = 0x55;
t2 = _mm512_mask_permutexvar_epi64(r2, (__mmask8)mask, vidx2, r0);
t3 = _mm512_mask_permutexvar_epi64(r3, (__mmask8)mask, vidx2, r1);
t6 = _mm512_mask_permutexvar_epi64(r6, (__mmask8)mask, vidx2, r4);
t7 = _mm512_mask_permutexvar_epi64(r7, (__mmask8)mask, vidx2, r5);
ta = _mm512_mask_permutexvar_epi64(ra, (__mmask8)mask, vidx2, r8);
tb = _mm512_mask_permutexvar_epi64(rb, (__mmask8)mask, vidx2, r9);
te = _mm512_mask_permutexvar_epi64(re, (__mmask8)mask, vidx2, rc);
tf = _mm512_mask_permutexvar_epi64(rf, (__mmask8)mask, vidx2, rd);
mask = 0xaaaa;
r0 = _mm512_mask_permutexvar_epi32(t0, (__mmask16)mask, vidx3, t1);
r2 = _mm512_mask_permutexvar_epi32(t2, (__mmask16)mask, vidx3, t3);
r4 = _mm512_mask_permutexvar_epi32(t4, (__mmask16)mask, vidx3, t5);
r6 = _mm512_mask_permutexvar_epi32(t6, (__mmask16)mask, vidx3, t7);
r8 = _mm512_mask_permutexvar_epi32(t8, (__mmask16)mask, vidx3, t9);
ra = _mm512_mask_permutexvar_epi32(ta, (__mmask16)mask, vidx3, tb);
rc = _mm512_mask_permutexvar_epi32(tc, (__mmask16)mask, vidx3, td);
re = _mm512_mask_permutexvar_epi32(te, (__mmask16)mask, vidx3, tf);
mask = 0x5555;
r1 = _mm512_mask_permutexvar_epi32(t1, (__mmask16)mask, vidx3, t0);
r3 = _mm512_mask_permutexvar_epi32(t3, (__mmask16)mask, vidx3, t2);
r5 = _mm512_mask_permutexvar_epi32(t5, (__mmask16)mask, vidx3, t4);
r7 = _mm512_mask_permutexvar_epi32(t7, (__mmask16)mask, vidx3, t6);
r9 = _mm512_mask_permutexvar_epi32(t9, (__mmask16)mask, vidx3, t8);
rb = _mm512_mask_permutexvar_epi32(tb, (__mmask16)mask, vidx3, ta);
rd = _mm512_mask_permutexvar_epi32(td, (__mmask16)mask, vidx3, tc);
rf = _mm512_mask_permutexvar_epi32(tf, (__mmask16)mask, vidx3, te);
_mm512_store_epi32(&matT[ 0*16], r0);
_mm512_store_epi32(&matT[ 1*16], r1);
_mm512_store_epi32(&matT[ 2*16], r2);
_mm512_store_epi32(&matT[ 3*16], r3);
_mm512_store_epi32(&matT[ 4*16], r4);
_mm512_store_epi32(&matT[ 5*16], r5);
_mm512_store_epi32(&matT[ 6*16], r6);
_mm512_store_epi32(&matT[ 7*16], r7);
_mm512_store_epi32(&matT[ 8*16], r8);
_mm512_store_epi32(&matT[ 9*16], r9);
_mm512_store_epi32(&matT[10*16], ra);
_mm512_store_epi32(&matT[11*16], rb);
_mm512_store_epi32(&matT[12*16], rc);
_mm512_store_epi32(&matT[13*16], rd);
_mm512_store_epi32(&matT[14*16], re);
_mm512_store_epi32(&matT[15*16], rf);
int* tmp = mat;
mat = matT;
matT = tmp;
}
}