For Python in Sentence中的循环

时间:2015-04-03 00:05:37

标签: python python-2.7

有人可以告诉我如何循环浏览这些地方,而不是通过继续附加到字符串的字符串将其列出来。

world = ["Japan", "China", "Seattle", "Brazil"]

print "This is my story of the following places: " 

for place in world:
    print place

编辑:我在打印命令的末尾添加了一个逗号,但由于它是一个单独的列表,我希望能够添加一个分隔符。 最终结果我希望它显示如下:

This is my store of the following places. Japan, China, Seattle, Brazil.

最终修改:使用以下代码,它会删除一行,我正在尝试找出如何删除其他行,以便它继续在同一行。

world = ["Japan", "China", "Seattle", "Brazil"]


print "This is my story of the following places: ", 

for i in range(0,len(world)):
    if i==(len(world)-1):
        print world[i] + '.'
    else:
        print world[i] +',',

print ". Which has all 

这是我访问过以下地方的故事。他们是中国,日本,西雅图和巴西

。其中包含所有伟大的图标

3 个答案:

答案 0 :(得分:6)

使用join()方法获取要与给定字符串连接的事物列表

print "This is my store of the following places. " + ", ".join(world)

答案 1 :(得分:1)

您必须在print()命令后添加逗号以防止新行:

回复您的评论:

world = ["Japan", "China", "Seattle", "Brazil"]


print "This is my story of the following places: ", 

for i in range(0,len(world)):
    if i==(len(world)-1):
        print world[i] + '.', #<-- Add another comma
    else:
        print world[i] +',',

输出:

This is my story of the following places:  Japan, China, Seattle, Brazil.

我制作了if语句来添加逗号&#39;和一个期间&#39;使输出看起来像一个列表。这适用于任何尺寸列表。

但是,请查看join()方法(由@ILostMySpoon建议)。效率更高。

答案 2 :(得分:0)

这是我修改过的python程序,因此您可以为从0到“ m”的整个集合计算乘法逆:

#This code was edited by David Pinos from cybersecurity Centennial College. Canada
# This code is contributed by Nikita tiwari and it was taked from https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/#:~:text=To%20find%20multiplicative%20inverse%20of,value%20of%20gcd%20as%201.&text=We%20can%20remove%20the%20second,0%20for%20an%20integer%20y.

# Iterative Python 3 program to find 
# modular inverse using extended 
# Euclid algorithm 
  
# Returns modulo inverse of a with 
# respect to m using extended Euclid 
# Algorithm Assumption: a and m are 
# coprimes, i.e., gcd(a, m) = 1 
def modInverse(a, m) : 
    m0 = m 
    y = 0
    x = 1
  
    if (m == 1) : 
        return 0
  
    while (a > 1) : 
  
        # q is quotient 
        if (m==0):
            return "there is no inverse for this number"
        else:
            q = a // m 
            t = m 
  
            # m is remainder now, process 
            # same as Euclid's algo 
            m = a % m 
            a = t 
            t = y 
  
            # Update x and y 
            y = x - q * y 
            x = t 
    # Make x positive 
    if (x < 0) : 
        x = x + m0 
    return x 
  
  
# Driver program to test above function 

m = 26 #your SET

i=0
while (i<m):
    print("Modular multiplicative inverse of ", i, " in ", m, " is: ", modInverse(i, m))
    i=i+1