如何删除圆圈内的一组网格点?

时间:2015-03-29 14:26:38

标签: python numpy matplotlib

我正在尝试创建一个网格网格,其中没有一些点位于具有指定坐标和半径的圆内。我无法减去落在圆圈内的网格点。 这是我的代码

import math
import numpy 
import matplotlib.pyplot as plt


N = 50
x_start, x_end = -2.0, 2.0 
y_start, y_end = -1.0, 1.0


x = numpy.linspace(x_start, x_end, N)
y = numpy.linspace(y_start, y_end, N)

circle_x, circle_y, r= 0.0, 0.0, 0.4

#x.remove((r-circle_x)**2)   #need some help with these two lines
#y.remove((r-circle_y)**2)


X, Y = numpy.meshgrid(x, y)


size = 10
fig = plt.figure()
plt.xlabel('x', fontsize = 16)
plt.ylabel('y', fontsize = 16)
plt.scatter(X, Y)
plt.show()

显示网格点的网格点##标题

3 个答案:

答案 0 :(得分:4)

如果你喜欢只有圆圈外点的散点图,请使用布尔索引来仅选择2D" meshgridded"中的那些点。阵列:

import numpy as np
import matplotlib.pyplot as plt

N = 50
x_start, x_end = -2.0, 2.0
y_start, y_end = -1.0, 1.0

x = np.linspace(x_start, x_end, N)
y = np.linspace(y_start, y_end, N)

x0, y0, radius = 0.0, 0.0, 0.4

x, y = np.meshgrid(x, y)
r = np.sqrt((x - x0)**2 + (y - y0)**2)

outside = r > radius

fig, ax = plt.subplots()
ax.set(xlabel='X', ylabel='Y', aspect=1.0)

ax.scatter(x[outside], y[outside])

plt.show()

enter image description here


另一方面,如果你使用需要2D输入的imshow之类的东西,你需要屏蔽内部的值(如@JulienSpronck所提到的,尽管设置它们会更好)到np.nan或使用掩码数组而不是将它们设置为0)或在图像上设置剪辑路径。

但是,对于分散,您不需要2D输入。


nD数组上的布尔索引将返回1d结果。例如:

In [9]: x = np.arange(100).reshape(10, 10)

In [10]: x
Out[10]: 
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
       [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
       [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
       [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
       [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])

In [11]: x[x > 75]
Out[11]: 
array([76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
       93, 94, 95, 96, 97, 98, 99])

因为scatter只是绘制点,所以它并不关心它们的连接方式,我们可以轻松使用布尔索引的一维结果。

另一方面,如果您想绘制图像,则需要2D网格。在这种情况下,您希望改为掩盖值:

In [12]: np.ma.masked_where(x <= 75, x)
Out[12]: 
masked_array(data =
 [[-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- -- 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]])

注意这是如何维护输入的2D结构的。

另外,如果这是一个浮点数组,您可以轻松地将值设置为np.nan而不是屏蔽它们。用imshow绘制时,两者的行为相同。在这种情况下,我使用了蒙面数组,因为x是一个整数数组,并且不能包含NaN&#39。

答案 1 :(得分:2)

不能简单地从网格网格中删除点。相反,您应该创建另一个数组Z作为

Z = numpy.where((X-circle_x)**2+(Y-circle_y)**2>r**2,1,0)

并将其绘制为

plt.scatter(X,Y,Z)

答案 2 :(得分:2)

您无法删除数组xy中的点数。这是一个2D问题,需要从x中删除的值取决于y,反之亦然。

您可以直接在您创建的网格上进行操作(XY)。例如,

import math
import numpy 
import matplotlib.pyplot as plt


N = 200
x_start, x_end = -2.0, 2.0 
y_start, y_end = -2.0, 2.0


x = numpy.linspace(x_start, x_end, N)
y = numpy.linspace(y_start, y_end, N)

circle_x, circle_y, r= 0.0, 0.0, 0.4

X, Y = numpy.meshgrid(x, y)

## Define points within circle
pts = (X-circle_x)**2+(Y-circle_y)**2 <= r**2

## Create a constant mask over grid
M = numpy.ones(X.shape)
## Assign 0 to mask for all points within circle
M[pts] = 0

size = 10
fig = plt.figure()
plt.imshow(M)
plt.show()

这不会删除XY中的任何积分。相反,如果您希望仅对部分点执行计算,则可以执行

pts = (X-circle_x)**2+(Y-circle_y)**2 > r**2
X = X[pts]
Y = Y[pts]

plt.scatter(X,Y)
plt.show()