Python pandas数据帧警告,建议使用.loc代替?

时间:2015-03-25 18:21:07

标签: python-2.7 indexing pandas

您好我想通过删除丢失的信息来操纵数据,并将所有字母设为小写。但对于小写转换,我收到此警告:

E:\ Program Files Extra \ Python27 \ lib \ site-packages \ pandas \ core \ frame.py:1808:UserWarning: Boolean系列键将重新编制索引以匹配DataFrame索引。   " DataFrame索引。",UserWarning) C:\ Users \ KubiK \ Desktop \ FamSeach_NameHandling.py:18:SettingWithCopyWarning: 尝试在DataFrame的切片副本上设置值。 尝试使用.loc [row_indexer,col_indexer] = value而不是

请参阅文档中的警告:http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy   frame3 [" name"] = frame3 [" name"]。str.lower() C:\ Users \ KubiK \ Desktop \ FamSeach_NameHandling.py:19:SettingWithCopyWarning: 尝试在DataFrame的切片副本上设置值。 尝试使用.loc [row_indexer,col_indexer] = value而不是

请参阅文档中的警告:http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy   第3帧["种族"] =第3帧["种族"]。str.lower()

import pandas as pd
from pandas import DataFrame

# Get csv file into data frame
data = pd.read_csv("C:\Users\KubiK\Desktop\OddNames_sampleData.csv")
frame = DataFrame(data)
frame.columns = ["name", "ethnicity"]
name = frame.name
ethnicity = frame.ethnicity

# Remove missing ethnicity data cases
index_missEthnic = frame.ethnicity.isnull()
index_missName = frame.name.isnull()
frame2 = frame[index_missEthnic != True]
frame3 = frame2[index_missName != True]

# Make all letters into lowercase
frame3["name"] = frame3["name"].str.lower()
frame3["ethnicity"] = frame3["ethnicity"].str.lower()

# Test outputs
print frame3

这个警告似乎并不致命(至少对我的小样本数据而言),但我该如何处理?

示例数据

Name    Ethnicity
Thos C. Martin                              Russian
Charlotte Wing                              English
Frederick A T Byrne                         Canadian
J George Christe                            French
Mary R O'brien                              English
Marie A Savoie-dit Dugas                    English
J-b'te Letourneau                           Scotish
Jane Mc-earthar                             French
Amabil?? Bonneau                            English
Emma Lef??c                                 French
C., Akeefe                                  African
D, James Matheson                           English
Marie An: Thomas                            English
Susan Rrumb;u                               English
                                            English
Kaio Chan   

2 个答案:

答案 0 :(得分:3)

不确定为什么你需要这么多的布尔... 另请注意,.isnull()不会捕获空字符串。 并且在应用.lower()之前过滤空字符串似乎也不是必需的。 但它有需要......这对我有用:

frame = pd.DataFrame({'name':['Abc Def', 'EFG GH', ''], 'ethnicity':['Ethnicity1','', 'Ethnicity2']})
print frame

    ethnicity     name
0  Ethnicity1  Abc Def
1               EFG GH
2  Ethnicity2         

name_null = frame.name.str.len() == 0
frame.loc[~name_null, 'name'] = frame.loc[~name_null, 'name'].str.lower()
print frame

    ethnicity     name
0  Ethnicity1  abc def
1               efg gh
2  Ethnicity2         

答案 1 :(得分:2)

设置frame2 / 3时,尝试使用.loc,如下所示:

frame2 = frame.loc[~index_missEthnic, :]
frame3 = frame2.loc[~index_missName, :]

我认为这可以解决您所看到的错误:

frame3.loc[:, "name"] = frame3.loc[:, "name"].str.lower()
frame3.loc[:, "ethnicity"] = frame3.loc[:, "ethnicity"].str.lower()

您也可以尝试以下方法,但它没有回答您的问题:

frame3.loc[:, "name"] = [t.lower() if isinstance(t, str) else t for t in frame3.name]
frame3.loc[:, "ethnicity"] = [t.lower() if isinstance(t, str) else t for t in frame3. ethnicity]

这会将列中的任何字符串转换为小写,否则会保持值不变。