Python:两个函数之间的重叠(kde和普通的PDF)

时间:2015-03-24 22:49:18

标签: python pdf overlap kernel-density

简短摘要:我试图弄清楚如何计算两个函数之间的重叠。一个是高斯,另一个是基于数据的核密度。然后,我想制作一个小算法,选择高斯的均值和方差,最大化重叠

首先,需要进口:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats.kde import gaussian_kde
import scipy

我有一些近似正常的数据(有点重的右尾)。我计算了这个数据的内核密度,cdf和pdf(在这个例子中,数据来自统一,因为我无法提供真实数据),如下所示:

def survivalFunction():

    data = np.random.normal(7,1,100) #Random data 

    p = sns.kdeplot(data, shade=False, lw = 3)
    x,y = p.get_lines()[0].get_data()
    cdf = scipy.integrate.cumtrapz(y, x, initial=0)

    plt.hist(data,50,normed = 1,facecolor='b',alpha = 0.3)

然后我有另一个功能,这只是一个简单的高斯:

def surpriseFunction(mu,variance):

    hStates = np.linspace(0,20,100)
    sigma = math.sqrt(variance)

    plt.plot(hStates,scipy.stats.norm.pdf(hStates, mu, sigma))

调用函数

surpriseFunction(5,1)
survivalFunction()

给出了这个情节

enter image description here

正如您可能已经注意到的那样,交换不同的mu值,在法线周围移动或多或少与内核估计重叠。现在,我的问题有两个:

1)如何计算两个函数之间的重叠?

2)我如何制作一个小算法,以这种方式选择高斯的均值和方差,以最大化这种重叠?

1 个答案:

答案 0 :(得分:3)

好的,所以我进行了相当大的改组,我认为它将主要部分分开,并且可以很容易地实现模块化/各种功能。我给出的上一个答案的原始代码是here

这是新的东西,希望它非常自我解释。

# Setup our various global variables
population_mean = 7
population_std_dev = 1
samples = 100
histogram_bins = 50

# And setup our figure.
from matplotlib import pyplot
fig = pyplot.figure()
ax = fig.add_subplot(1,1,1)


from numpy.random import normal  
hist_data = normal(population_mean, population_std_dev, samples)
ax.hist(hist_data, bins=histogram_bins, normed=True, color="blue", alpha=0.3)


from statsmodels.nonparametric.kde import KDEUnivariate
kde = KDEUnivariate(hist_data)
kde.fit()

#kde.supprt and kde.density hold the x and y values of the KDE fit.
ax.plot(kde.support, kde.density, color="red", lw=4)


#Gaussian function - though you can replace this with something of your choosing later.
from numpy import sqrt, exp, pi
r2pi = sqrt(2*pi)
def gaussian(x, mu, sigma):
  return exp(-0.5 * ( (x-mu) / sigma)**2) / (sigma * r2pi)

#interpolation of KDE to produce a function.
from scipy.interpolate import interp1d
kde_func = interp1d(kde.support, kde.density, kind="cubic", fill_value=0)

你想要做的只是标准的曲线拟合 - 有很多方法可以做到,你说你想通过最大化两个函数的重叠来拟合曲线(为什么?)。 curve_fir scipy例程是最小二乘拟合,它试图最小化两个函数之间的差异 - 差异是微妙的:最大化重叠不会因为大于数据而惩罚拟合函数,而{{ 1}}确实。

我已经使用这两种技术包含了解决方案,并对它们进行了分析:

curve_fit

现在有两种不同的方法,即重叠指标:

#We need to *maximise* the overlap integral
from scipy.integrate import quad as integrate
def overlap(func1, func2, limits, func1_args=[], func2_args=[]):

  def product_func(x):
    return min(func1(x, *func1_args),func2(x, *func2_args))

  return integrate(product_func, *limits)[0] # we only care about the absolute result for now.

limits = hist_data.min(), hist_data.max()
def gaussian_overlap(args):
  mu, sigma = args
  return -overlap(kde_func, gaussian, limits, func2_args=[mu, sigma])

和scipy方法import cProfile, pstats, StringIO pr1 = cProfile.Profile() pr1.enable() from scipy.optimize import fmin_powell as minimize mu_overlap_fit, sigma_overlap_fit = minimize(gaussian_overlap, (population_mean, population_std_dev)) pr1.disable() s = StringIO.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr1, stream=s).sort_stats(sortby) ps.print_stats() print s.getvalue() 3122462 function calls in 6.298 seconds Ordered by: cumulative time ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 6.298 6.298 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:2120(fmin_powell) 1 0.000 0.000 6.298 6.298 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:2237(_minimize_powell) 57 0.000 0.000 6.296 0.110 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:279(function_wrapper) 57 0.000 0.000 6.296 0.110 C:\Users\Will\Documents\Python_scripts\hist_fit.py:47(gaussian_overlap) 57 0.000 0.000 6.296 0.110 C:\Users\Will\Documents\Python_scripts\hist_fit.py:39(overlap) 57 0.000 0.000 6.296 0.110 C:\Python27\lib\site-packages\scipy\integrate\quadpack.py:42(quad) 57 0.000 0.000 6.295 0.110 C:\Python27\lib\site-packages\scipy\integrate\quadpack.py:327(_quad) 57 0.069 0.001 6.295 0.110 {scipy.integrate._quadpack._qagse} 66423 0.154 0.000 6.226 0.000 C:\Users\Will\Documents\Python_scripts\hist_fit.py:41(product_func) 4 0.000 0.000 6.167 1.542 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:2107(_linesearch_powell) 4 0.000 0.000 6.166 1.542 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:1830(brent) 4 0.000 0.000 6.166 1.542 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:1887(_minimize_scalar_brent) 4 0.001 0.000 6.166 1.542 C:\Python27\lib\site-packages\scipy\optimize\optimize.py:1717(optimize)

curve_fit

你可以更快地看到curve_fit方法很多,结果如下:

pr2 = cProfile.Profile()
pr2.enable()

from scipy.optimize import curve_fit
(mu_curve_fit, sigma_curve_fit), _ = curve_fit(gaussian, kde.support, kde.density, p0=(population_mean, population_std_dev))

pr2.disable()
s = StringIO.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr2, stream=s).sort_stats(sortby)
ps.print_stats()
print s.getvalue()




   122 function calls in 0.001 seconds

   Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.001    0.001 C:\Python27\lib\site-packages\scipy\optimize\minpack.py:452(curve_fit)
        1    0.000    0.000    0.001    0.001 C:\Python27\lib\site-packages\scipy\optimize\minpack.py:256(leastsq)
        1    0.000    0.000    0.001    0.001 {scipy.optimize._minpack._lmdif}
       19    0.000    0.000    0.001    0.000 C:\Python27\lib\site-packages\scipy\optimize\minpack.py:444(_general_function)
       19    0.000    0.000    0.000    0.000 C:\Users\Will\Documents\Python_scripts\hist_fit.py:29(gaussian)
        1    0.000    0.000    0.000    0.000 C:\Python27\lib\site-packages\scipy\linalg\basic.py:314(inv)
        1    0.000    0.000    0.000    0.000 C:\Python27\lib\site-packages\scipy\optimize\minpack.py:18(_check_func)

enter image description here

非常相似。我建议from numpy import linspace xs = linspace(-1, 1, num=1000) * sigma_overlap_fit * 6 + mu_overlap_fit ax.plot(xs, gaussian(xs, mu_overlap_fit, sigma_overlap_fit), color="orange", lw=2) xs = linspace(-1, 1, num=1000) * sigma_curve_fit * 6 + mu_curve_fit ax.plot(xs, gaussian(xs, mu_curve_fit, sigma_curve_fit), color="purple", lw=2) pyplot.show() 。在这种情况下,它快6000倍。当底层数据更复杂时,差别是一点点,但不是很多,而且你仍然可以获得巨大的加速。以下是适合的6个均匀分布的正态分布的示例:

enter image description here

使用curve_fit