我想修改我在下面创建的数据框:
from datetime import date
from dateutil.rrule import rrule, DAILY, YEARLY
from dateutil.relativedelta import *
import pandas
START_YR = 2010
END_YR = 2013
strt_date = datetime.date(START_YR, 1, 1)
end_date = datetime.date(END_YR, 12, 31)
dt = rrule(DAILY, dtstart=strt_date, until=end_date)
serie_1 = pandas.Series(np.random.randn(dt.count()), \
index = pandas.date_range(strt_date, end_date))
如何创建包含年份和日期的数据框作为单独的列?
答案 0 :(得分:2)
将系列转换为DataFrame,然后将新列添加为Pandas时段。 如果您只想将月份作为整数,请参阅'month_int'示例。
df = pd.DataFrame(serie_1)
df['month'] = [ts.to_period('M') for ts in df.index]
df['year'] = [ts.to_period('Y') for ts in df.index]
df['month_int'] = [ts.month for ts in df.index]
>>> df
Out[16]:
0 month year month_int
2010-01-01 0.332370 2010-01 2010 1
2010-01-02 -0.036814 2010-01 2010 1
2010-01-03 1.751511 2010-01 2010 1
... ... ... ... ...
2013-12-29 0.345707 2013-12 2013 12
2013-12-30 -0.395924 2013-12 2013 12
2013-12-31 -0.614565 2013-12 2013 12
答案 1 :(得分:2)
只需访问datetime属性即可快得多:
df['date'] = df.index.date
df['year'] = df.index.year
df['month'] = df.index.month
将时间与列表理解方法进行比较:
In [25]:
%%timeit
df['month'] = [ts.to_period('M') for ts in df.index]
df['year'] = [ts.to_period('Y') for ts in df.index]
df['month_int'] = [ts.month for ts in df.index]
1 loops, best of 3: 664 ms per loop
In [26]:
%%timeit
df['date'] = df.index.date
df['year'] = df.index.year
df['month'] = df.index.month
100 loops, best of 3: 5.96 ms per loop
因此,使用日期时间属性的速度要快100倍